化学
糖基
酰胺
氨基酸
糖肽
催化作用
立体化学
组合化学
有机化学
生物化学
抗生素
作者
Xiang-Yu Ye,Guanjie Wang,Zhichao Jin,Bin Yu,Junmin Zhang,Shi‐Chao Ren,Yonggui Robin
摘要
Glycoproteins account for numerous biological processes including those associated with diseases and infections. The advancement of glycopeptides has emerged as a promising strategy for unraveling biological pathways and discovering novel medicines. In this arena, a key challenge arises from the absence of efficient synthetic strategies to access glycopeptides and glycoproteins. Here, we present a highly concise approach to bridging saccharides with amino acids and peptides through an amide linkage. Our amide-linked C-glycosyl amino acids and peptides are synthesized through cooperative Ni-catalyzed and photoredox processes. The catalytic process generates a glycosyl radical and an amide carbonyl radical, which subsequently combine to yield the C-glycosyl products. The saccharide reaction partners encompass mono-, di-, and trisaccharides. All 20 natural amino acids, peptides, and their derivatives can efficiently undergo glycosylations with yields ranging from acceptable to high, demonstrating excellent stereoselectivities. As a substantial expansion of applications, we have shown that simple C-glycosyl amino acids can function as versatile building units for constructing C-glycopeptides with intricate spatial complexities.
科研通智能强力驱动
Strongly Powered by AbleSci AI