已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting PM2.5 levels and exceedance days using machine learning methods

支持向量机 随机森林 决策树 环境科学 人工神经网络 机器学习 相对湿度 气象学 空气质量指数 人工智能 计算机科学 地理
作者
Ziqi Gao,Khanh Do,Zongrun Li,Xiangyu Jiang,Kamal Jyoti Maji,Cesunica E. Ivey,Armistead G. Russell
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:323: 120396-120396 被引量:5
标识
DOI:10.1016/j.atmosenv.2024.120396
摘要

Machine learning methods are increasingly being used in the field of air quality research to investigate the relationship between air pollutant levels, emissions, and meteorological changes over time. This research is used for both scientific investigation, and policy assessment and development. However, there is a lack of studies that have compared the performance of different machine learning methods. To address this gap, this paper employed various machine learning techniques, including decision tree, random forest (RF), support vector machine (SVM), support vector regression (SVR), k-nearest neighbor, neural network, and Gaussian process regression, to predict daily average PM2.5 levels and the number of days with PM2.5 exceedance in the South Coast Air Basin of California from 2000 to 2019. The models were trained using meteorological factors, estimated emissions, and large-scale climate indices as inputs. The SVR model demonstrated the highest predictive accuracy for PM2.5 levels and the SVM model gave the most accurate results for predicting the number of days with PM2.5 exceedances. Conversely, the decision tree model performed the least accurately. The results also showed that emissions have a greater impact on PM2.5 levels over time compared to meteorological factors, though meteorology is responsible for daily variability. The most important meteorological factors were identified as surface relative humidity and relative humidity at 850 mbars, which are related to partitioning, cloud cover and wet deposition. We conducted sensitivity tests on the model's response to emissions and meteorological factors. The predicted PM2.5 from RF and SVR showed large correlations with emissions at the early period (2000–2010). However, the changes were minimal in more recent years (2011–2019), implying that there are biases in machine learning models, in which the models consistently predict the minimum PM2.5 levels at a baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣的如豹完成签到 ,获得积分20
1秒前
醉熏的井发布了新的文献求助10
1秒前
大模型应助秋刀鱼不过期采纳,获得10
5秒前
Lyrica完成签到 ,获得积分10
7秒前
诸宛完成签到,获得积分10
8秒前
机智难破完成签到,获得积分10
16秒前
Calvin发布了新的文献求助10
22秒前
Lyric完成签到,获得积分10
22秒前
22秒前
25秒前
zzx完成签到 ,获得积分10
25秒前
Artorias完成签到,获得积分10
29秒前
合适不悔完成签到 ,获得积分10
29秒前
30秒前
上官若男应助Pauline采纳,获得10
31秒前
Artorias发布了新的文献求助30
32秒前
36秒前
36秒前
37秒前
Owen应助发发采纳,获得10
41秒前
机智难破发布了新的文献求助10
41秒前
42秒前
妮妮发布了新的文献求助10
42秒前
43秒前
根瘤君完成签到,获得积分10
45秒前
46秒前
51秒前
852应助根瘤君采纳,获得10
52秒前
852应助铭铭铭采纳,获得10
52秒前
热心云朵发布了新的文献求助10
52秒前
53秒前
54秒前
JamesPei应助勤奋幻柏采纳,获得20
55秒前
58秒前
爆米花应助执着的海冬采纳,获得10
59秒前
Calvin完成签到,获得积分20
1分钟前
热心云朵完成签到,获得积分20
1分钟前
李爱国应助司为采纳,获得10
1分钟前
发发发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136861
求助须知:如何正确求助?哪些是违规求助? 2787866
关于积分的说明 7783453
捐赠科研通 2443938
什么是DOI,文献DOI怎么找? 1299488
科研通“疑难数据库(出版商)”最低求助积分说明 625461
版权声明 600954