Predicting PM2.5 levels and exceedance days using machine learning methods

支持向量机 随机森林 决策树 环境科学 人工神经网络 机器学习 相对湿度 气象学 空气质量指数 人工智能 计算机科学 地理
作者
Ziqi Gao,Khanh Do,Zongrun Li,Xiangyu Jiang,Kamal Jyoti Maji,Cesunica E. Ivey,Armistead G. Russell
出处
期刊:Atmospheric Environment [Elsevier BV]
卷期号:323: 120396-120396 被引量:5
标识
DOI:10.1016/j.atmosenv.2024.120396
摘要

Machine learning methods are increasingly being used in the field of air quality research to investigate the relationship between air pollutant levels, emissions, and meteorological changes over time. This research is used for both scientific investigation, and policy assessment and development. However, there is a lack of studies that have compared the performance of different machine learning methods. To address this gap, this paper employed various machine learning techniques, including decision tree, random forest (RF), support vector machine (SVM), support vector regression (SVR), k-nearest neighbor, neural network, and Gaussian process regression, to predict daily average PM2.5 levels and the number of days with PM2.5 exceedance in the South Coast Air Basin of California from 2000 to 2019. The models were trained using meteorological factors, estimated emissions, and large-scale climate indices as inputs. The SVR model demonstrated the highest predictive accuracy for PM2.5 levels and the SVM model gave the most accurate results for predicting the number of days with PM2.5 exceedances. Conversely, the decision tree model performed the least accurately. The results also showed that emissions have a greater impact on PM2.5 levels over time compared to meteorological factors, though meteorology is responsible for daily variability. The most important meteorological factors were identified as surface relative humidity and relative humidity at 850 mbars, which are related to partitioning, cloud cover and wet deposition. We conducted sensitivity tests on the model's response to emissions and meteorological factors. The predicted PM2.5 from RF and SVR showed large correlations with emissions at the early period (2000–2010). However, the changes were minimal in more recent years (2011–2019), implying that there are biases in machine learning models, in which the models consistently predict the minimum PM2.5 levels at a baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
janejane发布了新的文献求助10
刚刚
大笑的觅珍完成签到,获得积分10
1秒前
浮游应助房佳皓采纳,获得10
1秒前
2秒前
沐沐留下了新的社区评论
2秒前
Gxmmmm_应助nnnd77采纳,获得10
2秒前
4秒前
初末发布了新的文献求助10
5秒前
王先生账号完成签到,获得积分20
5秒前
小蘑菇应助悦耳紫霜采纳,获得10
6秒前
6秒前
枯叶蝶完成签到,获得积分10
6秒前
7秒前
顾矜应助许子健采纳,获得10
8秒前
共享精神应助许子健采纳,获得10
8秒前
一叶知秋应助许子健采纳,获得10
8秒前
充电宝应助许子健采纳,获得10
8秒前
9秒前
9秒前
乐乐应助许子健采纳,获得10
9秒前
浮游应助许子健采纳,获得10
9秒前
ding应助许子健采纳,获得10
9秒前
大模型应助许子健采纳,获得10
9秒前
小二郎应助许子健采纳,获得10
9秒前
10秒前
wsy发布了新的文献求助10
13秒前
13秒前
mtt应助一名科研生采纳,获得40
13秒前
14秒前
14秒前
Jasper应助swh采纳,获得30
14秒前
bliss发布了新的文献求助10
16秒前
周文辉关注了科研通微信公众号
17秒前
灵长类发布了新的文献求助10
17秒前
TUAN完成签到,获得积分10
17秒前
一耶随风完成签到,获得积分10
18秒前
悦耳紫霜发布了新的文献求助10
18秒前
19秒前
Orange应助研友采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4916187
求助须知:如何正确求助?哪些是违规求助? 4189726
关于积分的说明 13012119
捐赠科研通 3959063
什么是DOI,文献DOI怎么找? 2170518
邀请新用户注册赠送积分活动 1188698
关于科研通互助平台的介绍 1096671