已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting PM2.5 levels and exceedance days using machine learning methods

支持向量机 随机森林 决策树 环境科学 人工神经网络 机器学习 相对湿度 气象学 空气质量指数 人工智能 计算机科学 地理
作者
Ziqi Gao,Khanh Do,Zongrun Li,Xiangyu Jiang,Kamal Jyoti Maji,Cesunica E. Ivey,Armistead G. Russell
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:323: 120396-120396 被引量:5
标识
DOI:10.1016/j.atmosenv.2024.120396
摘要

Machine learning methods are increasingly being used in the field of air quality research to investigate the relationship between air pollutant levels, emissions, and meteorological changes over time. This research is used for both scientific investigation, and policy assessment and development. However, there is a lack of studies that have compared the performance of different machine learning methods. To address this gap, this paper employed various machine learning techniques, including decision tree, random forest (RF), support vector machine (SVM), support vector regression (SVR), k-nearest neighbor, neural network, and Gaussian process regression, to predict daily average PM2.5 levels and the number of days with PM2.5 exceedance in the South Coast Air Basin of California from 2000 to 2019. The models were trained using meteorological factors, estimated emissions, and large-scale climate indices as inputs. The SVR model demonstrated the highest predictive accuracy for PM2.5 levels and the SVM model gave the most accurate results for predicting the number of days with PM2.5 exceedances. Conversely, the decision tree model performed the least accurately. The results also showed that emissions have a greater impact on PM2.5 levels over time compared to meteorological factors, though meteorology is responsible for daily variability. The most important meteorological factors were identified as surface relative humidity and relative humidity at 850 mbars, which are related to partitioning, cloud cover and wet deposition. We conducted sensitivity tests on the model's response to emissions and meteorological factors. The predicted PM2.5 from RF and SVR showed large correlations with emissions at the early period (2000–2010). However, the changes were minimal in more recent years (2011–2019), implying that there are biases in machine learning models, in which the models consistently predict the minimum PM2.5 levels at a baseline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柚子完成签到 ,获得积分10
1秒前
沁雪完成签到 ,获得积分10
4秒前
甜美帅哥完成签到 ,获得积分10
4秒前
苗条的小蜜蜂完成签到 ,获得积分10
4秒前
阿凝完成签到,获得积分10
5秒前
blueskyzhi完成签到,获得积分10
7秒前
EthanChan完成签到,获得积分10
8秒前
10秒前
12秒前
FOREST关注了科研通微信公众号
12秒前
面包圈完成签到 ,获得积分10
13秒前
王馨雨完成签到,获得积分10
14秒前
张佳星完成签到 ,获得积分10
16秒前
16秒前
17秒前
独特的斑马完成签到 ,获得积分10
19秒前
昭昭如我愿完成签到,获得积分10
21秒前
21秒前
自觉的夏之完成签到,获得积分10
22秒前
24秒前
24秒前
24秒前
27秒前
28秒前
何木萧完成签到,获得积分10
30秒前
31秒前
shame完成签到 ,获得积分10
35秒前
善学以致用应助dlfg采纳,获得10
35秒前
记得吃蔬菜完成签到,获得积分10
36秒前
文艺的小之完成签到,获得积分10
36秒前
FOREST发布了新的文献求助10
36秒前
骑猪看月完成签到,获得积分10
37秒前
好有气质饭完成签到,获得积分20
39秒前
39秒前
可爱的香菇完成签到 ,获得积分10
41秒前
柔弱熊猫完成签到 ,获得积分10
42秒前
iCloud完成签到,获得积分10
43秒前
RSU完成签到,获得积分10
43秒前
YJH完成签到,获得积分10
43秒前
华仔应助自觉的夏之采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
4th edition, Qualitative Data Analysis with NVivo Jenine Beekhuyzen, Pat Bazeley 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611769
求助须知:如何正确求助?哪些是违规求助? 4695978
关于积分的说明 14889923
捐赠科研通 4726937
什么是DOI,文献DOI怎么找? 2545886
邀请新用户注册赠送积分活动 1510337
关于科研通互助平台的介绍 1473236