已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting PM2.5 levels and exceedance days using machine learning methods

支持向量机 随机森林 决策树 环境科学 人工神经网络 机器学习 相对湿度 气象学 空气质量指数 人工智能 计算机科学 地理
作者
Ziqi Gao,Khanh Do,Zongrun Li,Xiangyu Jiang,Kamal Jyoti Maji,Cesunica E. Ivey,Armistead G. Russell
出处
期刊:Atmospheric Environment [Elsevier BV]
卷期号:323: 120396-120396 被引量:5
标识
DOI:10.1016/j.atmosenv.2024.120396
摘要

Machine learning methods are increasingly being used in the field of air quality research to investigate the relationship between air pollutant levels, emissions, and meteorological changes over time. This research is used for both scientific investigation, and policy assessment and development. However, there is a lack of studies that have compared the performance of different machine learning methods. To address this gap, this paper employed various machine learning techniques, including decision tree, random forest (RF), support vector machine (SVM), support vector regression (SVR), k-nearest neighbor, neural network, and Gaussian process regression, to predict daily average PM2.5 levels and the number of days with PM2.5 exceedance in the South Coast Air Basin of California from 2000 to 2019. The models were trained using meteorological factors, estimated emissions, and large-scale climate indices as inputs. The SVR model demonstrated the highest predictive accuracy for PM2.5 levels and the SVM model gave the most accurate results for predicting the number of days with PM2.5 exceedances. Conversely, the decision tree model performed the least accurately. The results also showed that emissions have a greater impact on PM2.5 levels over time compared to meteorological factors, though meteorology is responsible for daily variability. The most important meteorological factors were identified as surface relative humidity and relative humidity at 850 mbars, which are related to partitioning, cloud cover and wet deposition. We conducted sensitivity tests on the model's response to emissions and meteorological factors. The predicted PM2.5 from RF and SVR showed large correlations with emissions at the early period (2000–2010). However, the changes were minimal in more recent years (2011–2019), implying that there are biases in machine learning models, in which the models consistently predict the minimum PM2.5 levels at a baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IMIke发布了新的文献求助10
2秒前
3秒前
爆米花应助coke采纳,获得10
3秒前
3秒前
小姜完成签到,获得积分10
3秒前
小小小新发布了新的文献求助10
3秒前
呵呵贺哈完成签到 ,获得积分10
4秒前
5秒前
srq发布了新的文献求助10
5秒前
6秒前
Hesper完成签到 ,获得积分10
7秒前
激情的一斩完成签到 ,获得积分10
7秒前
yeah完成签到 ,获得积分10
7秒前
8秒前
8秒前
yydragen应助Charon采纳,获得30
8秒前
芒果好高完成签到,获得积分10
9秒前
JJ发布了新的文献求助10
11秒前
田又甜完成签到,获得积分20
11秒前
B站萧亚轩发布了新的文献求助10
11秒前
Asnirelia完成签到 ,获得积分10
12秒前
猪猪hero应助没有昵称采纳,获得10
13秒前
小姜发布了新的文献求助10
13秒前
Vicktor2021发布了新的文献求助10
15秒前
郑同学发布了新的文献求助20
16秒前
17秒前
上官若男应助SteveRogers采纳,获得10
18秒前
清脆雅绿完成签到 ,获得积分10
19秒前
19秒前
20秒前
庸俗肤浅发布了新的文献求助10
20秒前
21秒前
ding应助江蹇采纳,获得10
21秒前
ooo完成签到 ,获得积分10
21秒前
B站萧亚轩发布了新的文献求助10
22秒前
宇航发布了新的文献求助10
23秒前
Summertrain完成签到,获得积分10
24秒前
peanuttt完成签到,获得积分10
24秒前
24秒前
JJ关闭了JJ文献求助
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959835
求助须知:如何正确求助?哪些是违规求助? 3506093
关于积分的说明 11127809
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789445
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021