Predicting PM2.5 levels and exceedance days using machine learning methods

支持向量机 随机森林 决策树 环境科学 人工神经网络 机器学习 相对湿度 气象学 空气质量指数 人工智能 计算机科学 地理
作者
Ziqi Gao,Khanh Do,Zongrun Li,Xiangyu Jiang,Kamal Jyoti Maji,Cesunica E. Ivey,Armistead G. Russell
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:323: 120396-120396 被引量:5
标识
DOI:10.1016/j.atmosenv.2024.120396
摘要

Machine learning methods are increasingly being used in the field of air quality research to investigate the relationship between air pollutant levels, emissions, and meteorological changes over time. This research is used for both scientific investigation, and policy assessment and development. However, there is a lack of studies that have compared the performance of different machine learning methods. To address this gap, this paper employed various machine learning techniques, including decision tree, random forest (RF), support vector machine (SVM), support vector regression (SVR), k-nearest neighbor, neural network, and Gaussian process regression, to predict daily average PM2.5 levels and the number of days with PM2.5 exceedance in the South Coast Air Basin of California from 2000 to 2019. The models were trained using meteorological factors, estimated emissions, and large-scale climate indices as inputs. The SVR model demonstrated the highest predictive accuracy for PM2.5 levels and the SVM model gave the most accurate results for predicting the number of days with PM2.5 exceedances. Conversely, the decision tree model performed the least accurately. The results also showed that emissions have a greater impact on PM2.5 levels over time compared to meteorological factors, though meteorology is responsible for daily variability. The most important meteorological factors were identified as surface relative humidity and relative humidity at 850 mbars, which are related to partitioning, cloud cover and wet deposition. We conducted sensitivity tests on the model's response to emissions and meteorological factors. The predicted PM2.5 from RF and SVR showed large correlations with emissions at the early period (2000–2010). However, the changes were minimal in more recent years (2011–2019), implying that there are biases in machine learning models, in which the models consistently predict the minimum PM2.5 levels at a baseline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一颗红葡萄完成签到 ,获得积分10
25秒前
suki完成签到 ,获得积分10
59秒前
龙猫爱看书完成签到,获得积分10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
Sunyidan完成签到,获得积分10
1分钟前
xiaoai完成签到 ,获得积分10
1分钟前
JOKER完成签到 ,获得积分10
1分钟前
gmc完成签到 ,获得积分0
1分钟前
砚木完成签到 ,获得积分10
1分钟前
又又完成签到,获得积分0
1分钟前
炙热曼梅完成签到 ,获得积分10
1分钟前
笨笨忘幽完成签到,获得积分0
2分钟前
沉静的迎荷完成签到 ,获得积分10
2分钟前
小学徒完成签到 ,获得积分10
2分钟前
CLTTT完成签到,获得积分0
2分钟前
矜持完成签到 ,获得积分10
2分钟前
MS903完成签到 ,获得积分10
2分钟前
青水完成签到 ,获得积分10
3分钟前
殷勤的紫槐完成签到,获得积分0
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
huanghe完成签到,获得积分10
3分钟前
风信子完成签到,获得积分10
3分钟前
MM完成签到 ,获得积分10
3分钟前
lpp完成签到 ,获得积分10
3分钟前
活力的珊完成签到 ,获得积分10
4分钟前
4分钟前
小白完成签到 ,获得积分10
4分钟前
4分钟前
bkagyin应助seun采纳,获得10
4分钟前
506407完成签到,获得积分10
4分钟前
安然完成签到 ,获得积分10
4分钟前
4分钟前
WL完成签到 ,获得积分10
5分钟前
jiunuan完成签到,获得积分10
5分钟前
shacodow完成签到,获得积分10
5分钟前
Jasmineyfz完成签到 ,获得积分10
5分钟前
ll完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561674
求助须知:如何正确求助?哪些是违规求助? 4646757
关于积分的说明 14678936
捐赠科研通 4588123
什么是DOI,文献DOI怎么找? 2517307
邀请新用户注册赠送积分活动 1490632
关于科研通互助平台的介绍 1461716