Predicting PM2.5 levels and exceedance days using machine learning methods

支持向量机 随机森林 决策树 环境科学 人工神经网络 机器学习 相对湿度 气象学 空气质量指数 人工智能 计算机科学 地理
作者
Ziqi Gao,Khanh Do,Zongrun Li,Xiangyu Jiang,Kamal Jyoti Maji,Cesunica E. Ivey,Armistead G. Russell
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:323: 120396-120396 被引量:5
标识
DOI:10.1016/j.atmosenv.2024.120396
摘要

Machine learning methods are increasingly being used in the field of air quality research to investigate the relationship between air pollutant levels, emissions, and meteorological changes over time. This research is used for both scientific investigation, and policy assessment and development. However, there is a lack of studies that have compared the performance of different machine learning methods. To address this gap, this paper employed various machine learning techniques, including decision tree, random forest (RF), support vector machine (SVM), support vector regression (SVR), k-nearest neighbor, neural network, and Gaussian process regression, to predict daily average PM2.5 levels and the number of days with PM2.5 exceedance in the South Coast Air Basin of California from 2000 to 2019. The models were trained using meteorological factors, estimated emissions, and large-scale climate indices as inputs. The SVR model demonstrated the highest predictive accuracy for PM2.5 levels and the SVM model gave the most accurate results for predicting the number of days with PM2.5 exceedances. Conversely, the decision tree model performed the least accurately. The results also showed that emissions have a greater impact on PM2.5 levels over time compared to meteorological factors, though meteorology is responsible for daily variability. The most important meteorological factors were identified as surface relative humidity and relative humidity at 850 mbars, which are related to partitioning, cloud cover and wet deposition. We conducted sensitivity tests on the model's response to emissions and meteorological factors. The predicted PM2.5 from RF and SVR showed large correlations with emissions at the early period (2000–2010). However, the changes were minimal in more recent years (2011–2019), implying that there are biases in machine learning models, in which the models consistently predict the minimum PM2.5 levels at a baseline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助包容的雨泽采纳,获得100
2秒前
白啾啾完成签到,获得积分10
2秒前
放眼天下完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
小小小小小粉帽啊完成签到,获得积分10
4秒前
4秒前
悦耳从筠发布了新的文献求助10
5秒前
文昊发布了新的文献求助10
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
傅宛白完成签到,获得积分10
6秒前
6秒前
6秒前
jxuexiong完成签到,获得积分10
6秒前
gu发布了新的文献求助10
7秒前
CipherSage应助老实半邪采纳,获得10
7秒前
old赵发布了新的文献求助10
7秒前
丘比特应助jeff采纳,获得10
8秒前
8秒前
8秒前
9秒前
傅宛白发布了新的文献求助10
9秒前
鸽子5359完成签到,获得积分10
10秒前
隐形曼青应助chen采纳,获得10
10秒前
10秒前
10秒前
活泼的铃铛给活泼的铃铛的求助进行了留言
11秒前
caizy发布了新的文献求助10
11秒前
压垮稻草的最后一只骆驼完成签到,获得积分10
11秒前
看不懂发布了新的文献求助10
11秒前
11秒前
CipherSage应助张琳琳采纳,获得10
12秒前
12秒前
jimmyyyyyy发布了新的文献求助10
13秒前
旭东静静发布了新的文献求助10
14秒前
菓小柒完成签到 ,获得积分10
14秒前
15秒前
gu完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026