Predicting PM2.5 levels and exceedance days using machine learning methods

支持向量机 随机森林 决策树 环境科学 人工神经网络 机器学习 相对湿度 气象学 空气质量指数 人工智能 计算机科学 地理
作者
Ziqi Gao,Khanh Do,Zongrun Li,Xiangyu Jiang,Kamal Jyoti Maji,Cesunica E. Ivey,Armistead G. Russell
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:323: 120396-120396 被引量:5
标识
DOI:10.1016/j.atmosenv.2024.120396
摘要

Machine learning methods are increasingly being used in the field of air quality research to investigate the relationship between air pollutant levels, emissions, and meteorological changes over time. This research is used for both scientific investigation, and policy assessment and development. However, there is a lack of studies that have compared the performance of different machine learning methods. To address this gap, this paper employed various machine learning techniques, including decision tree, random forest (RF), support vector machine (SVM), support vector regression (SVR), k-nearest neighbor, neural network, and Gaussian process regression, to predict daily average PM2.5 levels and the number of days with PM2.5 exceedance in the South Coast Air Basin of California from 2000 to 2019. The models were trained using meteorological factors, estimated emissions, and large-scale climate indices as inputs. The SVR model demonstrated the highest predictive accuracy for PM2.5 levels and the SVM model gave the most accurate results for predicting the number of days with PM2.5 exceedances. Conversely, the decision tree model performed the least accurately. The results also showed that emissions have a greater impact on PM2.5 levels over time compared to meteorological factors, though meteorology is responsible for daily variability. The most important meteorological factors were identified as surface relative humidity and relative humidity at 850 mbars, which are related to partitioning, cloud cover and wet deposition. We conducted sensitivity tests on the model's response to emissions and meteorological factors. The predicted PM2.5 from RF and SVR showed large correlations with emissions at the early period (2000–2010). However, the changes were minimal in more recent years (2011–2019), implying that there are biases in machine learning models, in which the models consistently predict the minimum PM2.5 levels at a baseline.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
调研昵称发布了新的文献求助10
刚刚
1秒前
科研通AI2S应助默默海露采纳,获得10
1秒前
彭于晏应助宝贝采纳,获得10
1秒前
金晶发布了新的文献求助10
2秒前
2秒前
Peter完成签到,获得积分20
2秒前
丰知然应助zhengke924采纳,获得10
2秒前
飘逸晓博完成签到 ,获得积分20
3秒前
coco完成签到 ,获得积分10
3秒前
科研菜鸟发布了新的文献求助10
3秒前
3秒前
大气的乌冬面完成签到,获得积分10
3秒前
3秒前
RUSTY完成签到,获得积分20
3秒前
田様应助11采纳,获得10
4秒前
4秒前
4秒前
4秒前
芝士完成签到,获得积分10
4秒前
pqy发布了新的文献求助10
4秒前
脆脆鲨完成签到,获得积分10
5秒前
5秒前
文安完成签到,获得积分10
5秒前
微笑如冰完成签到,获得积分10
6秒前
luo给luo的求助进行了留言
6秒前
晨曦发布了新的文献求助10
6秒前
6秒前
大方小白发布了新的文献求助10
6秒前
细腻沅发布了新的文献求助10
6秒前
科研通AI5应助FFF采纳,获得10
7秒前
7秒前
茉莉完成签到,获得积分10
7秒前
今今发布了新的文献求助10
8秒前
追寻的筝发布了新的文献求助10
8秒前
请叫我风吹麦浪应助Ll采纳,获得10
8秒前
Keming完成签到,获得积分10
8秒前
害羞聋五发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762