亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting PM2.5 levels and exceedance days using machine learning methods

支持向量机 随机森林 决策树 环境科学 人工神经网络 机器学习 相对湿度 气象学 空气质量指数 人工智能 计算机科学 地理
作者
Ziqi Gao,Khanh Do,Zongrun Li,Xiangyu Jiang,Kamal Jyoti Maji,Cesunica E. Ivey,Armistead G. Russell
出处
期刊:Atmospheric Environment [Elsevier]
卷期号:323: 120396-120396 被引量:5
标识
DOI:10.1016/j.atmosenv.2024.120396
摘要

Machine learning methods are increasingly being used in the field of air quality research to investigate the relationship between air pollutant levels, emissions, and meteorological changes over time. This research is used for both scientific investigation, and policy assessment and development. However, there is a lack of studies that have compared the performance of different machine learning methods. To address this gap, this paper employed various machine learning techniques, including decision tree, random forest (RF), support vector machine (SVM), support vector regression (SVR), k-nearest neighbor, neural network, and Gaussian process regression, to predict daily average PM2.5 levels and the number of days with PM2.5 exceedance in the South Coast Air Basin of California from 2000 to 2019. The models were trained using meteorological factors, estimated emissions, and large-scale climate indices as inputs. The SVR model demonstrated the highest predictive accuracy for PM2.5 levels and the SVM model gave the most accurate results for predicting the number of days with PM2.5 exceedances. Conversely, the decision tree model performed the least accurately. The results also showed that emissions have a greater impact on PM2.5 levels over time compared to meteorological factors, though meteorology is responsible for daily variability. The most important meteorological factors were identified as surface relative humidity and relative humidity at 850 mbars, which are related to partitioning, cloud cover and wet deposition. We conducted sensitivity tests on the model's response to emissions and meteorological factors. The predicted PM2.5 from RF and SVR showed large correlations with emissions at the early period (2000–2010). However, the changes were minimal in more recent years (2011–2019), implying that there are biases in machine learning models, in which the models consistently predict the minimum PM2.5 levels at a baseline.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方汀应助朴素海亦采纳,获得10
23秒前
1分钟前
dd完成签到,获得积分10
1分钟前
1分钟前
开朗大雁完成签到 ,获得积分10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
荷兰香猪完成签到,获得积分10
1分钟前
1分钟前
1分钟前
阳光的星月完成签到,获得积分10
1分钟前
研友_8RyzBZ完成签到,获得积分20
1分钟前
1分钟前
2分钟前
huahuaaixuexi完成签到,获得积分10
2分钟前
2分钟前
情怀应助成成鹅了采纳,获得10
2分钟前
苗龙伟完成签到 ,获得积分10
2分钟前
dd发布了新的文献求助200
2分钟前
852应助成成鹅了采纳,获得30
2分钟前
林妹妹完成签到 ,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
3分钟前
3分钟前
冷酷的如松完成签到,获得积分10
3分钟前
3分钟前
成成鹅了发布了新的文献求助10
3分钟前
3分钟前
3分钟前
丘比特应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
成成鹅了发布了新的文献求助30
3分钟前
LX1005完成签到,获得积分10
3分钟前
3分钟前
4分钟前
Orange应助成成鹅了采纳,获得10
4分钟前
5分钟前
5分钟前
乐乐应助成成鹅了采纳,获得10
5分钟前
正直的小蚂蚁完成签到 ,获得积分10
6分钟前
方森岩完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634903
求助须知:如何正确求助?哪些是违规求助? 4734139
关于积分的说明 14989445
捐赠科研通 4792634
什么是DOI,文献DOI怎么找? 2559723
邀请新用户注册赠送积分活动 1520035
关于科研通互助平台的介绍 1480107