Mitigating Targeted Universal Adversarial Attacks on Time Series Power Quality Disturbances Models

对抗制 计算机科学 系列(地层学) 质量(理念) 功率(物理) 时间序列 计算机安全 人工智能 机器学习 量子力学 生物 认识论 物理 哲学 古生物学
作者
Sultan Uddin Khan,Mohammed Mynuddin,Isaac Adom,Mahmoud Nabil
标识
DOI:10.1109/tps-isa58951.2023.00021
摘要

The utilization of deep learning models has been widely recognized for its significant contribution to the enhancement of smart grid operations, particularly in the domain of power quality disturbance (PQD) classification. Nevertheless, the emergence of vulnerabilities like targeted universal adversarial attacks can significantly undermine the reliability and security of deep learning models. These attacks can exploit the model's weaknesses, causing it to misclassify PQDs with potentially catastrophic consequences. In our previous research, we for the first time examined the vulnerability of deep learning models to targeted universal adversarial attacks on time series data in smart grids by introducing a novel algorithm that effectively attacks by maintaining a trade-off between fooling rate and imperceptibility. While this attack method demonstrated notable efficacy, it also emphasized the pressing need for robust defensive mechanisms to safeguard these critical systems. This paper provides a thorough examination and evaluation of different defense strategies, specifically adversarial training, defensive distillation, and feature squeezing, in order to identify the most effective method for mitigating targeted universal adversarial (TUA) attacks on time series data for three different types of imperceptibility (high, medium and low). Based on our analysis, adversarial training demonstrates a significant reduction in the success rate of attacks. Specifically, the technique reduced fooling rates by an average of 23.73% for high imperceptibility, 31.04% for medium imperceptibility, and a substantial 42.96% for low imperceptibility. These findings highlight the crucial role of adversarial training in enhancing the integrity of deep learning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈完成签到 ,获得积分20
刚刚
科研通AI2S应助李金文采纳,获得10
刚刚
黄黄发布了新的文献求助10
1秒前
keanu发布了新的文献求助20
1秒前
1秒前
辛勤的乐荷完成签到,获得积分10
2秒前
斯文的元柏完成签到,获得积分20
3秒前
3秒前
科研通AI2S应助靓丽的硬币采纳,获得10
3秒前
3秒前
天才罗发布了新的文献求助10
4秒前
4秒前
4秒前
打打应助淋漓尽致采纳,获得10
4秒前
珂尔维特发布了新的文献求助10
6秒前
6秒前
7秒前
eeush完成签到,获得积分10
7秒前
张丹兰完成签到,获得积分10
7秒前
风清扬应助Mingda采纳,获得10
7秒前
8秒前
8秒前
8秒前
grzzz完成签到,获得积分10
9秒前
鹿立轩发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
liuziop发布了新的文献求助10
10秒前
lily发布了新的文献求助10
10秒前
lili完成签到,获得积分10
10秒前
义气的乐曲完成签到,获得积分20
10秒前
Jamesliu发布了新的文献求助10
11秒前
传奇3应助你终硕采纳,获得10
11秒前
ee发布了新的文献求助10
11秒前
Jiayi发布了新的文献求助10
12秒前
Vanessa发布了新的文献求助10
12秒前
顺心夜南发布了新的文献求助10
13秒前
自信的小ping子完成签到,获得积分10
13秒前
大模型应助to高坚果采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577394
求助须知:如何正确求助?哪些是违规求助? 3996655
关于积分的说明 12373185
捐赠科研通 3670647
什么是DOI,文献DOI怎么找? 2022943
邀请新用户注册赠送积分活动 1057104
科研通“疑难数据库(出版商)”最低求助积分说明 944067