Mitigating Targeted Universal Adversarial Attacks on Time Series Power Quality Disturbances Models

对抗制 计算机科学 系列(地层学) 质量(理念) 功率(物理) 时间序列 计算机安全 人工智能 机器学习 古生物学 哲学 物理 认识论 量子力学 生物
作者
Sultan Uddin Khan,Mohammed Mynuddin,Isaac Adom,Mahmoud Nabil
标识
DOI:10.1109/tps-isa58951.2023.00021
摘要

The utilization of deep learning models has been widely recognized for its significant contribution to the enhancement of smart grid operations, particularly in the domain of power quality disturbance (PQD) classification. Nevertheless, the emergence of vulnerabilities like targeted universal adversarial attacks can significantly undermine the reliability and security of deep learning models. These attacks can exploit the model's weaknesses, causing it to misclassify PQDs with potentially catastrophic consequences. In our previous research, we for the first time examined the vulnerability of deep learning models to targeted universal adversarial attacks on time series data in smart grids by introducing a novel algorithm that effectively attacks by maintaining a trade-off between fooling rate and imperceptibility. While this attack method demonstrated notable efficacy, it also emphasized the pressing need for robust defensive mechanisms to safeguard these critical systems. This paper provides a thorough examination and evaluation of different defense strategies, specifically adversarial training, defensive distillation, and feature squeezing, in order to identify the most effective method for mitigating targeted universal adversarial (TUA) attacks on time series data for three different types of imperceptibility (high, medium and low). Based on our analysis, adversarial training demonstrates a significant reduction in the success rate of attacks. Specifically, the technique reduced fooling rates by an average of 23.73% for high imperceptibility, 31.04% for medium imperceptibility, and a substantial 42.96% for low imperceptibility. These findings highlight the crucial role of adversarial training in enhancing the integrity of deep learning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xslj发布了新的文献求助10
2秒前
优雅的冰岚完成签到,获得积分10
4秒前
方勇飞发布了新的文献求助10
4秒前
苏翰英发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
sunny完成签到 ,获得积分10
8秒前
乖猫要努力应助董海涛采纳,获得20
9秒前
哈哈发布了新的文献求助10
10秒前
10秒前
12秒前
14秒前
14秒前
maolao完成签到,获得积分10
15秒前
iNk应助科研通管家采纳,获得20
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
我是老大应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
18秒前
情怀应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
SYLH应助笔墨留香采纳,获得20
18秒前
XCHI发布了新的文献求助10
18秒前
19秒前
Qing发布了新的文献求助10
20秒前
金滢发布了新的文献求助10
21秒前
21秒前
22秒前
fireking_sid完成签到,获得积分10
23秒前
23秒前
小蘑菇应助咕噜咕噜噜熊采纳,获得10
23秒前
24秒前
sunshine发布了新的文献求助10
24秒前
jessica发布了新的文献求助10
25秒前
25秒前
26秒前
yxl要顺利毕业_发6篇C完成签到 ,获得积分10
26秒前
方勇飞完成签到,获得积分10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523700
关于积分的说明 11218393
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182