Mitigating Targeted Universal Adversarial Attacks on Time Series Power Quality Disturbances Models

对抗制 计算机科学 系列(地层学) 质量(理念) 功率(物理) 时间序列 计算机安全 人工智能 机器学习 量子力学 生物 认识论 物理 哲学 古生物学
作者
Sultan Uddin Khan,Mohammed Mynuddin,Isaac Adom,Mahmoud Nabil
标识
DOI:10.1109/tps-isa58951.2023.00021
摘要

The utilization of deep learning models has been widely recognized for its significant contribution to the enhancement of smart grid operations, particularly in the domain of power quality disturbance (PQD) classification. Nevertheless, the emergence of vulnerabilities like targeted universal adversarial attacks can significantly undermine the reliability and security of deep learning models. These attacks can exploit the model's weaknesses, causing it to misclassify PQDs with potentially catastrophic consequences. In our previous research, we for the first time examined the vulnerability of deep learning models to targeted universal adversarial attacks on time series data in smart grids by introducing a novel algorithm that effectively attacks by maintaining a trade-off between fooling rate and imperceptibility. While this attack method demonstrated notable efficacy, it also emphasized the pressing need for robust defensive mechanisms to safeguard these critical systems. This paper provides a thorough examination and evaluation of different defense strategies, specifically adversarial training, defensive distillation, and feature squeezing, in order to identify the most effective method for mitigating targeted universal adversarial (TUA) attacks on time series data for three different types of imperceptibility (high, medium and low). Based on our analysis, adversarial training demonstrates a significant reduction in the success rate of attacks. Specifically, the technique reduced fooling rates by an average of 23.73% for high imperceptibility, 31.04% for medium imperceptibility, and a substantial 42.96% for low imperceptibility. These findings highlight the crucial role of adversarial training in enhancing the integrity of deep learning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷艳的凡阳完成签到,获得积分10
刚刚
小蘑菇应助xzx7086采纳,获得10
刚刚
qin希望应助海洋采纳,获得10
1秒前
guojingjing发布了新的文献求助10
1秒前
李小鑫吖完成签到,获得积分10
3秒前
今夕何夕完成签到,获得积分10
3秒前
科研小能手完成签到,获得积分10
3秒前
hx驳回了CipherSage应助
3秒前
乐观的凌兰完成签到 ,获得积分10
4秒前
文献通完成签到 ,获得积分10
4秒前
烟花应助问津采纳,获得10
6秒前
6秒前
Blue完成签到,获得积分10
6秒前
Balance Man完成签到 ,获得积分10
7秒前
阿达完成签到 ,获得积分10
7秒前
YAMO一完成签到,获得积分10
8秒前
五斤老陈醋完成签到,获得积分10
9秒前
9秒前
9秒前
1111完成签到,获得积分10
10秒前
无所事事的無无完成签到,获得积分10
10秒前
xiaojinzi完成签到 ,获得积分10
10秒前
耍酷的白桃完成签到,获得积分10
11秒前
谨慎的雨琴完成签到,获得积分10
11秒前
Tomi发布了新的文献求助10
11秒前
努力搬砖的小胡完成签到,获得积分10
11秒前
1107任务报告完成签到,获得积分10
11秒前
鲜艳的皮皮虾完成签到 ,获得积分10
12秒前
打打应助azai采纳,获得10
12秒前
Orange应助azai采纳,获得10
12秒前
orixero应助azai采纳,获得10
12秒前
科研小白发布了新的文献求助10
13秒前
wang完成签到 ,获得积分10
13秒前
直率白秋发布了新的文献求助10
14秒前
Zeger116完成签到,获得积分10
15秒前
羊羊完成签到 ,获得积分10
16秒前
17秒前
Bobby完成签到,获得积分10
18秒前
感性的安露完成签到,获得积分10
18秒前
犹豫小海豚完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890