Mitigating Targeted Universal Adversarial Attacks on Time Series Power Quality Disturbances Models

对抗制 计算机科学 系列(地层学) 质量(理念) 功率(物理) 时间序列 计算机安全 人工智能 机器学习 古生物学 哲学 物理 认识论 量子力学 生物
作者
Sultan Uddin Khan,Mohammed Mynuddin,Isaac Adom,Mahmoud Nabil
标识
DOI:10.1109/tps-isa58951.2023.00021
摘要

The utilization of deep learning models has been widely recognized for its significant contribution to the enhancement of smart grid operations, particularly in the domain of power quality disturbance (PQD) classification. Nevertheless, the emergence of vulnerabilities like targeted universal adversarial attacks can significantly undermine the reliability and security of deep learning models. These attacks can exploit the model's weaknesses, causing it to misclassify PQDs with potentially catastrophic consequences. In our previous research, we for the first time examined the vulnerability of deep learning models to targeted universal adversarial attacks on time series data in smart grids by introducing a novel algorithm that effectively attacks by maintaining a trade-off between fooling rate and imperceptibility. While this attack method demonstrated notable efficacy, it also emphasized the pressing need for robust defensive mechanisms to safeguard these critical systems. This paper provides a thorough examination and evaluation of different defense strategies, specifically adversarial training, defensive distillation, and feature squeezing, in order to identify the most effective method for mitigating targeted universal adversarial (TUA) attacks on time series data for three different types of imperceptibility (high, medium and low). Based on our analysis, adversarial training demonstrates a significant reduction in the success rate of attacks. Specifically, the technique reduced fooling rates by an average of 23.73% for high imperceptibility, 31.04% for medium imperceptibility, and a substantial 42.96% for low imperceptibility. These findings highlight the crucial role of adversarial training in enhancing the integrity of deep learning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zho发布了新的文献求助10
刚刚
云烟完成签到,获得积分10
1秒前
传奇3应助二行采纳,获得10
2秒前
科研通AI2S应助二行采纳,获得10
2秒前
小二郎应助二行采纳,获得10
2秒前
CipherSage应助二行采纳,获得10
2秒前
今后应助二行采纳,获得10
2秒前
在水一方应助二行采纳,获得10
2秒前
Eve丶Paopaoxuan应助二行采纳,获得10
2秒前
扶余山本完成签到 ,获得积分10
4秒前
7秒前
害羞的醉卉完成签到 ,获得积分10
8秒前
栗子壳应助熊仔一百采纳,获得50
9秒前
无花果应助沈佳琪采纳,获得10
9秒前
9秒前
完美世界应助djs采纳,获得10
9秒前
10秒前
oydent发布了新的文献求助10
11秒前
悦耳的乐松完成签到,获得积分10
12秒前
12秒前
yangkai发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
LL完成签到,获得积分10
15秒前
风羽完成签到,获得积分10
15秒前
15秒前
是冬天完成签到 ,获得积分10
17秒前
一方通行发布了新的文献求助10
17秒前
紫禁城的雪花完成签到,获得积分10
18秒前
lcc完成签到 ,获得积分10
18秒前
Crazy发布了新的文献求助10
19秒前
月亮发布了新的文献求助10
19秒前
20秒前
隐形曼青应助眼里有星星采纳,获得10
20秒前
小马甲应助体贴的乐松采纳,获得10
21秒前
subass发布了新的文献求助10
21秒前
李健应助夜夜采纳,获得10
21秒前
52Hertz完成签到,获得积分10
21秒前
22秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479574
求助须知:如何正确求助?哪些是违规求助? 3070143
关于积分的说明 9116766
捐赠科研通 2761878
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700985
科研通“疑难数据库(出版商)”最低求助积分说明 699985