Mitigating Targeted Universal Adversarial Attacks on Time Series Power Quality Disturbances Models

对抗制 计算机科学 系列(地层学) 质量(理念) 功率(物理) 时间序列 计算机安全 人工智能 机器学习 量子力学 生物 认识论 物理 哲学 古生物学
作者
Sultan Uddin Khan,Mohammed Mynuddin,Isaac Adom,Mahmoud Nabil
标识
DOI:10.1109/tps-isa58951.2023.00021
摘要

The utilization of deep learning models has been widely recognized for its significant contribution to the enhancement of smart grid operations, particularly in the domain of power quality disturbance (PQD) classification. Nevertheless, the emergence of vulnerabilities like targeted universal adversarial attacks can significantly undermine the reliability and security of deep learning models. These attacks can exploit the model's weaknesses, causing it to misclassify PQDs with potentially catastrophic consequences. In our previous research, we for the first time examined the vulnerability of deep learning models to targeted universal adversarial attacks on time series data in smart grids by introducing a novel algorithm that effectively attacks by maintaining a trade-off between fooling rate and imperceptibility. While this attack method demonstrated notable efficacy, it also emphasized the pressing need for robust defensive mechanisms to safeguard these critical systems. This paper provides a thorough examination and evaluation of different defense strategies, specifically adversarial training, defensive distillation, and feature squeezing, in order to identify the most effective method for mitigating targeted universal adversarial (TUA) attacks on time series data for three different types of imperceptibility (high, medium and low). Based on our analysis, adversarial training demonstrates a significant reduction in the success rate of attacks. Specifically, the technique reduced fooling rates by an average of 23.73% for high imperceptibility, 31.04% for medium imperceptibility, and a substantial 42.96% for low imperceptibility. These findings highlight the crucial role of adversarial training in enhancing the integrity of deep learning applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
光亮的千亦完成签到,获得积分10
2秒前
aaa发布了新的文献求助10
2秒前
周久完成签到 ,获得积分10
3秒前
闹心发布了新的文献求助10
3秒前
4秒前
善学以致用应助llll采纳,获得10
6秒前
嗯哼完成签到 ,获得积分10
6秒前
7秒前
汤汤发布了新的文献求助50
9秒前
9秒前
胡小妹发布了新的文献求助10
9秒前
苏木发布了新的文献求助10
11秒前
小巧的傲松完成签到,获得积分10
11秒前
11秒前
13秒前
量子星尘发布了新的文献求助150
14秒前
15秒前
麒麟发布了新的文献求助10
16秒前
17秒前
17秒前
刘sc发布了新的文献求助10
19秒前
wawaeryu发布了新的文献求助30
21秒前
科研通AI2S应助嘻嘻采纳,获得10
21秒前
高兴的黑米完成签到,获得积分10
21秒前
21秒前
缥缈蓉发布了新的文献求助10
22秒前
23秒前
24秒前
26秒前
着急的青枫应助你女采纳,获得10
27秒前
28秒前
1112131345发布了新的文献求助10
29秒前
Labubububu发布了新的文献求助30
29秒前
30秒前
麒麟完成签到,获得积分10
31秒前
周全完成签到 ,获得积分10
32秒前
32秒前
共享精神应助失眠飞鱼采纳,获得10
33秒前
嘻嘻发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4915038
求助须知:如何正确求助?哪些是违规求助? 4189167
关于积分的说明 13010035
捐赠科研通 3958176
什么是DOI,文献DOI怎么找? 2170103
邀请新用户注册赠送积分活动 1188349
关于科研通互助平台的介绍 1096077