A novel microbe-drug association prediction model based on graph attention networks and bilayer random forest

随机森林 特征(语言学) 计算机科学 图形 人工智能 生物网络 机器学习 药品 相似性(几何) 计算生物学 联想(心理学) 数据挖掘 生物 理论计算机科学 药理学 哲学 语言学 图像(数学) 认识论
作者
Hanhui Kuang,Zhen Zhang,Bin Zeng,Xin Liu,Hongfu Zuo,Xianmin Xu,Lei Wang
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05687-9
摘要

Abstract Background In recent years, the extensive use of drugs and antibiotics has led to increasing microbial resistance. Therefore, it becomes crucial to explore deep connections between drugs and microbes. However, traditional biological experiments are very expensive and time-consuming. Therefore, it is meaningful to develop efficient computational models to forecast potential microbe-drug associations. Results In this manuscript, we proposed a novel prediction model called GARFMDA by combining graph attention networks and bilayer random forest to infer probable microbe-drug correlations. In GARFMDA, through integrating different microbe-drug-disease correlation indices, we constructed two different microbe-drug networks first. And then, based on multiple measures of similarity, we constructed a unique feature matrix for drugs and microbes respectively. Next, we fed these newly-obtained microbe-drug networks together with feature matrices into the graph attention network to extract the low-dimensional feature representations for drugs and microbes separately. Thereafter, these low-dimensional feature representations, along with the feature matrices, would be further inputted into the first layer of the Bilayer random forest model to obtain the contribution values of all features. And then, after removing features with low contribution values, these contribution values would be fed into the second layer of the Bilayer random forest to detect potential links between microbes and drugs. Conclusions Experimental results and case studies show that GARFMDA can achieve better prediction performance than state-of-the-art approaches, which means that GARFMDA may be a useful tool in the field of microbe-drug association prediction in the future. Besides, the source code of GARFMDA is available at https://github.com/KuangHaiYue/GARFMDA.git
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助加减乘除采纳,获得10
刚刚
刚刚
恬恬完成签到,获得积分10
刚刚
1秒前
22发布了新的文献求助10
1秒前
aacc956发布了新的文献求助10
1秒前
1秒前
谨慎涵柏完成签到,获得积分10
2秒前
快乐的如风完成签到,获得积分10
3秒前
4秒前
吃猫的鱼完成签到,获得积分10
4秒前
脑洞疼应助润润轩轩采纳,获得10
5秒前
刘文静完成签到,获得积分10
6秒前
Southluuu发布了新的文献求助10
6秒前
chenjyuu发布了新的文献求助10
6秒前
6秒前
粗暴的仙人掌完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
logic发布了新的文献求助10
7秒前
习习应助生动的雨竹采纳,获得10
7秒前
bo完成签到 ,获得积分10
7秒前
迟大猫应助啵乐乐采纳,获得10
8秒前
安雯完成签到 ,获得积分10
8秒前
HuLL完成签到,获得积分10
8秒前
Yolo完成签到 ,获得积分10
8秒前
难过的慕青完成签到,获得积分10
8秒前
10秒前
10秒前
10秒前
11秒前
无花果应助sunzhiyu233采纳,获得10
11秒前
韭黄完成签到,获得积分20
11秒前
12秒前
诚c发布了新的文献求助10
12秒前
自然秋柳完成签到 ,获得积分10
12秒前
我是老大应助经法采纳,获得10
12秒前
默默的皮牙子应助经法采纳,获得10
12秒前
orixero应助经法采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759