A novel microbe-drug association prediction model based on graph attention networks and bilayer random forest

随机森林 特征(语言学) 计算机科学 图形 人工智能 生物网络 机器学习 药品 相似性(几何) 计算生物学 联想(心理学) 数据挖掘 生物 理论计算机科学 药理学 认识论 图像(数学) 哲学 语言学
作者
Hanhui Kuang,Zhen Zhang,Bin Zeng,Xin Liu,Hongfu Zuo,Xianmin Xu,Lei Wang
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12859-024-05687-9
摘要

Abstract Background In recent years, the extensive use of drugs and antibiotics has led to increasing microbial resistance. Therefore, it becomes crucial to explore deep connections between drugs and microbes. However, traditional biological experiments are very expensive and time-consuming. Therefore, it is meaningful to develop efficient computational models to forecast potential microbe-drug associations. Results In this manuscript, we proposed a novel prediction model called GARFMDA by combining graph attention networks and bilayer random forest to infer probable microbe-drug correlations. In GARFMDA, through integrating different microbe-drug-disease correlation indices, we constructed two different microbe-drug networks first. And then, based on multiple measures of similarity, we constructed a unique feature matrix for drugs and microbes respectively. Next, we fed these newly-obtained microbe-drug networks together with feature matrices into the graph attention network to extract the low-dimensional feature representations for drugs and microbes separately. Thereafter, these low-dimensional feature representations, along with the feature matrices, would be further inputted into the first layer of the Bilayer random forest model to obtain the contribution values of all features. And then, after removing features with low contribution values, these contribution values would be fed into the second layer of the Bilayer random forest to detect potential links between microbes and drugs. Conclusions Experimental results and case studies show that GARFMDA can achieve better prediction performance than state-of-the-art approaches, which means that GARFMDA may be a useful tool in the field of microbe-drug association prediction in the future. Besides, the source code of GARFMDA is available at https://github.com/KuangHaiYue/GARFMDA.git
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行7完成签到,获得积分10
1秒前
1秒前
啊啊啊完成签到 ,获得积分10
2秒前
shangfeng发布了新的文献求助10
3秒前
4秒前
华仔应助霓虹熄世界清采纳,获得10
5秒前
Lucas应助NJQ采纳,获得10
5秒前
川川完成签到,获得积分10
7秒前
9秒前
10秒前
11秒前
11秒前
SGI完成签到,获得积分10
12秒前
小刘爱实验完成签到,获得积分10
13秒前
susie233完成签到,获得积分10
14秒前
56745完成签到 ,获得积分10
14秒前
15秒前
Lucas应助宁山河采纳,获得10
16秒前
Lucas应助吴大打采纳,获得10
18秒前
56745关注了科研通微信公众号
18秒前
18秒前
19秒前
19秒前
20秒前
Yu_6nd23完成签到,获得积分20
21秒前
Hancen完成签到,获得积分10
22秒前
55完成签到,获得积分10
22秒前
Tink完成签到,获得积分10
23秒前
23秒前
23秒前
芊慧完成签到,获得积分10
24秒前
24秒前
24秒前
25秒前
科研通AI2S应助wodetaiyangLLL采纳,获得10
25秒前
25秒前
25秒前
廖华发布了新的文献求助10
27秒前
27秒前
NJQ发布了新的文献求助10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143779
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814327
捐赠科研通 2451315
什么是DOI,文献DOI怎么找? 1304413
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601419