SideNet: Learning representations from interactive side information for zero-shot Chinese character recognition

计算机科学 人工智能 Glyph(数据可视化) 分类器(UML) 互补性(分子生物学) 自然语言处理 模式识别(心理学) 可视化 遗传学 生物
作者
Ziyan Li,Yuhao Huang,Dezhi Peng,Mengchao He,Lianwen Jin
出处
期刊:Pattern Recognition [Elsevier]
卷期号:148: 110208-110208 被引量:11
标识
DOI:10.1016/j.patcog.2023.110208
摘要

Existing methods for zero-shot Chinese character recognition usually exploit a single type of side information such as radicals, glyphs, or strokes to establish a mapping with the input characters for the recognition of unseen categories. However, these approaches have two limitations. Firstly, the mappings are inefficient owing to their complexity. Some existing methods design radical-level mappings using a non-differentiable dictionary-matching strategy, whereas others construct sophisticated embeddings to map seen and unseen characters into a unified latent space. Although the latter approach is straightforward, it lacks a learnable scheme for explicit structure construction. Secondly, the complementarity within multiple types of side information has not been effectively explored. For example, the radicals provide structural knowledge at an abstract level, whereas glyphs offer detailed information on their figurative counterparts. To this end, we propose a new method called SideNet that jointly learns character-level representations assisted by two types of interactive side information: radicals and glyphs. SideNet contains a structural conversion module that extracts radical knowledge via dimensional decomposition, and a spatial conversion module that encodes the radical counting map to produce an interactive outcome between radicals and glyph. Finally, we propose a new classifier that integrates the converted features by a similarity-guided fusion mechanism. To the best of our knowledge, this study represents the first attempt to integrate these two types of side information and explore a joint representation for zero-shot learning. Experiments show that SideNet consistently outperforms existing methods by a significant margin in diverse scenarios, including handwriting, printed art, natural scenes, and ancient Chinese characters, which demonstrates the potential of joint learning with multiple types of side information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任伟超完成签到,获得积分10
刚刚
mgiwwk完成签到 ,获得积分10
1秒前
SerCheung完成签到,获得积分10
2秒前
2秒前
心悦SCI完成签到,获得积分10
3秒前
张向向完成签到 ,获得积分10
4秒前
稳重乌冬面完成签到 ,获得积分10
4秒前
嘻嘻我完成签到,获得积分10
7秒前
代桃发布了新的文献求助10
8秒前
8秒前
陈_Ccc完成签到 ,获得积分10
10秒前
wp4455777完成签到,获得积分10
10秒前
醉熏的菲鹰完成签到 ,获得积分10
10秒前
栗子完成签到,获得积分10
16秒前
研友_VZGVzn完成签到,获得积分10
18秒前
Criminology34应助青稞人采纳,获得10
20秒前
代桃完成签到,获得积分10
22秒前
风-FBDD完成签到,获得积分10
22秒前
Asumita完成签到,获得积分10
23秒前
优雅芷波完成签到 ,获得积分10
24秒前
wwww发布了新的文献求助10
26秒前
27秒前
xiaoliu完成签到,获得积分10
28秒前
kyt_vip完成签到,获得积分10
31秒前
甜甜的平蓝完成签到 ,获得积分10
31秒前
小树完成签到 ,获得积分10
33秒前
去小岛上流浪完成签到,获得积分10
34秒前
文与武完成签到 ,获得积分10
39秒前
在水一方应助科研通管家采纳,获得10
42秒前
烟花应助科研通管家采纳,获得10
42秒前
42秒前
NexusExplorer应助科研通管家采纳,获得10
42秒前
祁灵枫完成签到,获得积分10
44秒前
特图图应助Brave采纳,获得30
45秒前
CWC完成签到,获得积分10
46秒前
优美的莹芝完成签到,获得积分10
48秒前
盛意完成签到,获得积分10
49秒前
50秒前
Orange应助peili采纳,获得10
51秒前
2025顺顺利利完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325651
求助须知:如何正确求助?哪些是违规求助? 4466021
关于积分的说明 13895204
捐赠科研通 4358353
什么是DOI,文献DOI怎么找? 2394037
邀请新用户注册赠送积分活动 1387459
关于科研通互助平台的介绍 1358320