SideNet: Learning representations from interactive side information for zero-shot Chinese character recognition

计算机科学 人工智能 Glyph(数据可视化) 分类器(UML) 互补性(分子生物学) 自然语言处理 模式识别(心理学) 可视化 遗传学 生物
作者
Ziyan Li,Yuhao Huang,Dezhi Peng,Mengchao He,Lianwen Jin
出处
期刊:Pattern Recognition [Elsevier]
卷期号:148: 110208-110208 被引量:3
标识
DOI:10.1016/j.patcog.2023.110208
摘要

Existing methods for zero-shot Chinese character recognition usually exploit a single type of side information such as radicals, glyphs, or strokes to establish a mapping with the input characters for the recognition of unseen categories. However, these approaches have two limitations. Firstly, the mappings are inefficient owing to their complexity. Some existing methods design radical-level mappings using a non-differentiable dictionary-matching strategy, whereas others construct sophisticated embeddings to map seen and unseen characters into a unified latent space. Although the latter approach is straightforward, it lacks a learnable scheme for explicit structure construction. Secondly, the complementarity within multiple types of side information has not been effectively explored. For example, the radicals provide structural knowledge at an abstract level, whereas glyphs offer detailed information on their figurative counterparts. To this end, we propose a new method called SideNet that jointly learns character-level representations assisted by two types of interactive side information: radicals and glyphs. SideNet contains a structural conversion module that extracts radical knowledge via dimensional decomposition, and a spatial conversion module that encodes the radical counting map to produce an interactive outcome between radicals and glyph. Finally, we propose a new classifier that integrates the converted features by a similarity-guided fusion mechanism. To the best of our knowledge, this study represents the first attempt to integrate these two types of side information and explore a joint representation for zero-shot learning. Experiments show that SideNet consistently outperforms existing methods by a significant margin in diverse scenarios, including handwriting, printed art, natural scenes, and ancient Chinese characters, which demonstrates the potential of joint learning with multiple types of side information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小黑驴完成签到 ,获得积分10
1秒前
orixero应助称心豁采纳,获得10
2秒前
稳重的烙完成签到 ,获得积分10
2秒前
3秒前
andy完成签到,获得积分10
5秒前
hhh发布了新的文献求助10
6秒前
7秒前
8秒前
andy发布了新的文献求助10
8秒前
香蕉觅云应助Naomi-yu采纳,获得10
9秒前
9秒前
李思超发布了新的文献求助240
11秒前
12秒前
12秒前
鲤鱼凛完成签到,获得积分20
14秒前
15秒前
17秒前
迟梦完成签到,获得积分10
17秒前
17秒前
fifteen发布了新的文献求助10
17秒前
飞飞鱼发布了新的文献求助10
19秒前
19秒前
斯文败类应助落沧采纳,获得10
21秒前
hhh完成签到,获得积分20
22秒前
22秒前
23秒前
大模型应助含糊的冬易采纳,获得10
24秒前
24秒前
小蘑菇应助平原玫瑰采纳,获得50
24秒前
一二三发布了新的文献求助10
24秒前
RW发布了新的文献求助10
24秒前
26秒前
26秒前
27秒前
刘娇娇发布了新的文献求助10
28秒前
威武十八发布了新的文献求助10
29秒前
Jiang 小白完成签到,获得积分10
30秒前
30秒前
852应助高高的大地采纳,获得10
30秒前
32秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164329
求助须知:如何正确求助?哪些是违规求助? 2815119
关于积分的说明 7907636
捐赠科研通 2474677
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631871
版权声明 602234