SideNet: Learning representations from interactive side information for zero-shot Chinese character recognition

计算机科学 人工智能 Glyph(数据可视化) 分类器(UML) 互补性(分子生物学) 自然语言处理 模式识别(心理学) 可视化 遗传学 生物
作者
Ziyan Li,Yuhao Huang,Dezhi Peng,Mengchao He,Lianwen Jin
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:148: 110208-110208 被引量:3
标识
DOI:10.1016/j.patcog.2023.110208
摘要

Existing methods for zero-shot Chinese character recognition usually exploit a single type of side information such as radicals, glyphs, or strokes to establish a mapping with the input characters for the recognition of unseen categories. However, these approaches have two limitations. Firstly, the mappings are inefficient owing to their complexity. Some existing methods design radical-level mappings using a non-differentiable dictionary-matching strategy, whereas others construct sophisticated embeddings to map seen and unseen characters into a unified latent space. Although the latter approach is straightforward, it lacks a learnable scheme for explicit structure construction. Secondly, the complementarity within multiple types of side information has not been effectively explored. For example, the radicals provide structural knowledge at an abstract level, whereas glyphs offer detailed information on their figurative counterparts. To this end, we propose a new method called SideNet that jointly learns character-level representations assisted by two types of interactive side information: radicals and glyphs. SideNet contains a structural conversion module that extracts radical knowledge via dimensional decomposition, and a spatial conversion module that encodes the radical counting map to produce an interactive outcome between radicals and glyph. Finally, we propose a new classifier that integrates the converted features by a similarity-guided fusion mechanism. To the best of our knowledge, this study represents the first attempt to integrate these two types of side information and explore a joint representation for zero-shot learning. Experiments show that SideNet consistently outperforms existing methods by a significant margin in diverse scenarios, including handwriting, printed art, natural scenes, and ancient Chinese characters, which demonstrates the potential of joint learning with multiple types of side information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
为科研奋斗完成签到,获得积分10
1秒前
Inter09完成签到,获得积分10
1秒前
fuguier完成签到,获得积分10
1秒前
松绿格完成签到,获得积分10
2秒前
2秒前
痴情的寒云完成签到 ,获得积分10
3秒前
yoyolulu完成签到,获得积分10
3秒前
Tracy.完成签到,获得积分10
4秒前
4秒前
sharon完成签到,获得积分10
5秒前
刘雅彪完成签到 ,获得积分10
5秒前
寒星苍梧完成签到,获得积分10
5秒前
Ava应助皮灵犀采纳,获得10
5秒前
duoduo完成签到,获得积分10
5秒前
cherish_7宝完成签到,获得积分10
6秒前
qwt_hello发布了新的文献求助30
7秒前
Xl完成签到,获得积分10
7秒前
激动的访文完成签到,获得积分10
8秒前
鲜艳的棒棒糖完成签到,获得积分10
8秒前
谨慎寻冬完成签到,获得积分10
9秒前
eric888应助fangzhang采纳,获得150
9秒前
10秒前
正经大善人完成签到,获得积分10
11秒前
顺心醉蝶完成签到 ,获得积分10
11秒前
实验顺顺利利完成签到,获得积分10
11秒前
rio完成签到,获得积分10
12秒前
Inanopig完成签到,获得积分10
12秒前
丁老三完成签到 ,获得积分10
13秒前
研友_Lpawrn完成签到,获得积分10
13秒前
胖丁完成签到,获得积分10
13秒前
菲菲完成签到 ,获得积分20
14秒前
xxs发布了新的文献求助10
15秒前
15秒前
苗条一兰完成签到,获得积分10
15秒前
白色的风车完成签到,获得积分10
15秒前
小月Anna完成签到,获得积分10
16秒前
16秒前
yg发布了新的文献求助10
17秒前
Hello应助贝加尔湖畔采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855