MDTL-NET: Computer-generated image detection based on multi-scale deep texture learning

计算机科学 人工智能 纹理(宇宙学) 图像(数学) 比例(比率) 深度学习 计算机视觉 网(多面体) 模式识别(心理学) 机器学习 数学 地图学 几何学 地理
作者
Qiang Xu,Shan Jia,Xinghao Jiang,Tanfeng Sun,Zhe Wang,Hong Yan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:248: 123368-123368 被引量:2
标识
DOI:10.1016/j.eswa.2024.123368
摘要

Distinguishing between computer-generated (CG) and natural photographic (PG) images is of great importance to verify the authenticity and originality of digital images. However, the recent cutting-edge generation methods enable high qualities of synthesis in CG images, which makes this challenging task even trickier. To address this issue, a novel multi-scale deep texture learning neural network coined as MDTL-NET is proposed for CG image detection. We first utilize a global texture representation module incorporating the ResNet architecture to capture multi-scale texture patterns. Then, a deep texture enhancement module based on a semantic segmentation map guided affine transformation operation is designed for texture difference amplification. To enhance performance, we equip the MDTL-NET with channel and spatial attention mechanisms, which refines intermediate features and facilitates trace exploration in different domains. Moreover, a Low-rank Tensor Representation (LTR) strategy is also used for feature fusion. Extensive experiments on three public datasets and a newly constructed dataset1 with more realistic and diverse images show that the proposed approach outperforms existing methods in the field by a clear margin. Besides, results also demonstrate the detection robustness and generalization ability of the proposed approach to postprocessing operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祖乐萱发布了新的文献求助10
刚刚
陈信宏完成签到,获得积分10
1秒前
1秒前
逍遥子完成签到,获得积分10
1秒前
2秒前
ff发布了新的文献求助10
3秒前
浮游应助djbj2022采纳,获得10
3秒前
科研通AI6应助双夏采纳,获得30
5秒前
冬日空虚完成签到,获得积分10
5秒前
6秒前
8秒前
9秒前
大个应助小黄采纳,获得10
9秒前
10秒前
10秒前
jack发布了新的文献求助10
11秒前
爱笑的天空完成签到,获得积分10
11秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
simdows完成签到,获得积分10
15秒前
科研通AI6应助季文婷采纳,获得10
15秒前
脑洞疼应助jack采纳,获得10
19秒前
123应助儒雅致远采纳,获得10
19秒前
慕青应助儒雅致远采纳,获得10
19秒前
善学以致用应助万事都灵采纳,获得10
20秒前
Wonder罗完成签到,获得积分20
21秒前
小蘑菇应助坦率幻灵采纳,获得10
25秒前
25秒前
26秒前
27秒前
29秒前
msf0073应助JJJ采纳,获得10
31秒前
躺躺躺发布了新的文献求助10
32秒前
34秒前
35秒前
36秒前
37秒前
量子星尘发布了新的文献求助10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638000
求助须知:如何正确求助?哪些是违规求助? 4744481
关于积分的说明 15000910
捐赠科研通 4796182
什么是DOI,文献DOI怎么找? 2562369
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481741