Scheduling in the High-Uncertainty Heavy Traffic Regime

数学 调度(生产过程) 数学优化 交通拥挤 运筹学 运输工程 工程类
作者
Rami Atar,Eyal Castiel,Yonatan Shadmi
出处
期刊:Mathematics of Operations Research [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/moor.2022.0100
摘要

We propose a model uncertainty approach to heavy traffic asymptotics that allows for a high level of uncertainty. That is, the uncertainty classes of underlying distributions accommodate disturbances that are of order 1 at the usual diffusion scale as opposed to asymptotically vanishing disturbances studied previously in relation to heavy traffic. A main advantage of the approach is that the invariance principle underlying diffusion limits makes it possible to define uncertainty classes in terms of the first two moments only. The model we consider is a single-server queue with multiple job types. The problem is formulated as a zero sum stochastic game played between the system controller, who determines scheduling and attempts to minimize an expected linear holding cost, and an adversary, who dynamically controls the service time distributions of arriving jobs and attempts to maximize the cost. The heavy traffic asymptotics of the game are fully solved. It is shown that an asymptotically optimal policy for the system controller is to prioritize according to an index rule, and for the adversary, it is to select distributions based on the system’s current workload. The workload-to-distribution feedback mapping is determined by a Hamilton–Jacobi–Bellman equation, which also characterizes the game’s limit value. Unlike in the vast majority of results in the heavy traffic theory and as a direct consequence of the diffusive size disturbances, the limiting dynamics under asymptotically optimal play are captured by a stochastic differential equation where both the drift and the diffusion coefficients may be discontinuous. Funding: R. Atar is supported by the Israeli Science Foundation [Grant 1035/20].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助慕山采纳,获得10
刚刚
1秒前
雨夜茑萝发布了新的文献求助10
1秒前
2秒前
2秒前
善学以致用应助bofu采纳,获得10
3秒前
思源应助xiao123采纳,获得50
3秒前
siwen发布了新的文献求助10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
劲秉应助科研通管家采纳,获得20
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
脑洞疼应助灰灰采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
4秒前
若ruofeng应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
若ruofeng应助科研通管家采纳,获得10
4秒前
若ruofeng应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
Xiaoyuan发布了新的文献求助30
4秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
英姑应助科研通管家采纳,获得10
5秒前
water应助科研通管家采纳,获得10
5秒前
5秒前
文档发布了新的文献求助10
6秒前
lettuce完成签到,获得积分10
6秒前
6秒前
英俊的铭应助仁清采纳,获得10
7秒前
友好惜儿发布了新的文献求助10
8秒前
xinxinbaby完成签到,获得积分10
8秒前
fuwenzhang发布了新的文献求助10
8秒前
Lucas应助文静采纳,获得10
9秒前
快乐的菠萝完成签到,获得积分10
9秒前
Jiao H.P发布了新的文献求助30
9秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734840
求助须知:如何正确求助?哪些是违规求助? 3278768
关于积分的说明 10011520
捐赠科研通 2995441
什么是DOI,文献DOI怎么找? 1643442
邀请新用户注册赠送积分活动 781187
科研通“疑难数据库(出版商)”最低求助积分说明 749300