材料科学
异质结
晶体管
调制(音乐)
实现(概率)
光电子学
卷积神经网络
突触重量
半导体
计算机科学
光电探测器
纳米技术
电子工程
人工神经网络
电气工程
人工智能
物理
声学
工程类
电压
统计
数学
作者
Enlong Li,Xiumei Wang,Xipeng Yu,Rengjian Yu,Wenwu Li,Tailiang Guo,Junhao Chu,Huipeng Chen
标识
DOI:10.1002/adfm.202314980
摘要
Abstract Efficient in‐sensor computing necessitates linear, bidirectional, and centrosymmetric photoresponse weight updates; however, the realization of these attributes poses a persistent challenge, with most photosensor devices achieving linear analog weight updates while falling short of accomplishing bidirectional and centrosymmetric characteristics. Here, the development of a quantum dot (QD)–based bulk heterojunction synaptic transistor (QBST) with multi‐factor modulation through surface ligand engineering of blend QDs is reported. By controlling the charge transmission between QDs and the semiconductor, the QBST device enables tunable fading memory, which transforms linear weight updates in short‐chain devices into linear, bidirectional, and unprecedented centrosymmetric optical synaptic responses in long‐chain devices. Moreover, through the synergy of chemical and electric factors, the convolutional kernel of QBSTs‐based convolutional neural network realizes enhanced recognition for complex noisy fashion‐costume images, achieving an impressive 90.3% accuracy in the long‐chain device, highlighting the efficiency of centrosymmetric weight updates. The results demonstrate that surface ligand engineering offers a promising approach for customizable synaptic modulation, facilitating energy‐ and time‐efficient in‐sensor computing.
科研通智能强力驱动
Strongly Powered by AbleSci AI