Enhancing software defect prediction: a framework with improved feature selection and ensemble machine learning

计算机科学 特征选择 机器学习 集成学习 人工智能 软件 选择(遗传算法) 特征(语言学) 软件错误 语言学 哲学 程序设计语言
作者
Mansoor Ali,Tehseen Mazhar,Amal Al‐Rasheed,Tariq Shahzad,Yazeed Yasin Ghadi,Muhammad Amir Khan
出处
期刊:PeerJ [PeerJ, Inc.]
卷期号:10: e1860-e1860
标识
DOI:10.7717/peerj-cs.1860
摘要

Effective software defect prediction is a crucial aspect of software quality assurance, enabling the identification of defective modules before the testing phase. This study aims to propose a comprehensive five-stage framework for software defect prediction, addressing the current challenges in the field. The first stage involves selecting a cleaned version of NASA’s defect datasets, including CM1, JM1, MC2, MW1, PC1, PC3, and PC4, ensuring the data’s integrity. In the second stage, a feature selection technique based on the genetic algorithm is applied to identify the optimal subset of features. In the third stage, three heterogeneous binary classifiers, namely random forest, support vector machine, and naïve Bayes, are implemented as base classifiers. Through iterative tuning, the classifiers are optimized to achieve the highest level of accuracy individually. In the fourth stage, an ensemble machine-learning technique known as voting is applied as a master classifier, leveraging the collective decision-making power of the base classifiers. The final stage evaluates the performance of the proposed framework using five widely recognized performance evaluation measures: precision, recall, accuracy, F-measure, and area under the curve. Experimental results demonstrate that the proposed framework outperforms state-of-the-art ensemble and base classifiers employed in software defect prediction and achieves a maximum accuracy of 95.1%, showing its effectiveness in accurately identifying software defects. The framework also evaluates its efficiency by calculating execution times. Notably, it exhibits enhanced efficiency, significantly reducing the execution times during the training and testing phases by an average of 51.52% and 52.31%, respectively. This reduction contributes to a more computationally economical solution for accurate software defect prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助浔xxx采纳,获得10
刚刚
qin希望应助花生采纳,获得10
刚刚
123123完成签到,获得积分10
1秒前
1秒前
orixero应助潇洒的问夏采纳,获得10
1秒前
lenon发布了新的文献求助10
1秒前
ycg完成签到,获得积分10
2秒前
gz发布了新的文献求助10
2秒前
丘小易发布了新的文献求助10
2秒前
2秒前
stcer完成签到,获得积分10
2秒前
wu驳回了打打应助
2秒前
Adrenaline完成签到,获得积分10
3秒前
大橘完成签到 ,获得积分10
3秒前
和谐迎夏完成签到,获得积分10
3秒前
3秒前
nadeem发布了新的文献求助10
4秒前
BP发布了新的文献求助10
4秒前
4秒前
萤火虫发布了新的文献求助10
4秒前
4秒前
风雨中奔跑的兔子完成签到,获得积分10
5秒前
Hmc完成签到 ,获得积分10
5秒前
Kira完成签到,获得积分10
5秒前
四月完成签到 ,获得积分10
6秒前
孙先生YY发布了新的文献求助10
6秒前
犹豫信封发布了新的文献求助10
7秒前
张亚朋完成签到,获得积分10
8秒前
老妖怪完成签到,获得积分10
8秒前
李爱国应助包容的瑾瑜采纳,获得10
8秒前
9秒前
10秒前
小齐完成签到 ,获得积分10
11秒前
11秒前
科目三应助专注的冰巧采纳,获得10
12秒前
12秒前
hanping完成签到,获得积分10
12秒前
小王时完成签到,获得积分10
12秒前
zz完成签到,获得积分10
12秒前
莫非完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650