Enhancing software defect prediction: a framework with improved feature selection and ensemble machine learning

计算机科学 特征选择 机器学习 集成学习 人工智能 软件 选择(遗传算法) 特征(语言学) 软件错误 哲学 语言学 程序设计语言
作者
Mansoor Ali,Tehseen Mazhar,Amal Al‐Rasheed,Tariq Shahzad,Yazeed Yasin Ghadi,Muhammad Amir Khan
出处
期刊:PeerJ [PeerJ]
卷期号:10: e1860-e1860
标识
DOI:10.7717/peerj-cs.1860
摘要

Effective software defect prediction is a crucial aspect of software quality assurance, enabling the identification of defective modules before the testing phase. This study aims to propose a comprehensive five-stage framework for software defect prediction, addressing the current challenges in the field. The first stage involves selecting a cleaned version of NASA’s defect datasets, including CM1, JM1, MC2, MW1, PC1, PC3, and PC4, ensuring the data’s integrity. In the second stage, a feature selection technique based on the genetic algorithm is applied to identify the optimal subset of features. In the third stage, three heterogeneous binary classifiers, namely random forest, support vector machine, and naïve Bayes, are implemented as base classifiers. Through iterative tuning, the classifiers are optimized to achieve the highest level of accuracy individually. In the fourth stage, an ensemble machine-learning technique known as voting is applied as a master classifier, leveraging the collective decision-making power of the base classifiers. The final stage evaluates the performance of the proposed framework using five widely recognized performance evaluation measures: precision, recall, accuracy, F-measure, and area under the curve. Experimental results demonstrate that the proposed framework outperforms state-of-the-art ensemble and base classifiers employed in software defect prediction and achieves a maximum accuracy of 95.1%, showing its effectiveness in accurately identifying software defects. The framework also evaluates its efficiency by calculating execution times. Notably, it exhibits enhanced efficiency, significantly reducing the execution times during the training and testing phases by an average of 51.52% and 52.31%, respectively. This reduction contributes to a more computationally economical solution for accurate software defect prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jin发布了新的文献求助10
刚刚
Akim应助郭小胖14采纳,获得10
2秒前
111111发布了新的文献求助10
2秒前
青黛完成签到,获得积分10
2秒前
3秒前
欢呼海露发布了新的文献求助10
3秒前
领导范儿应助atg采纳,获得10
4秒前
嘟嘟完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
乐观灵凡关注了科研通微信公众号
7秒前
吹雪完成签到,获得积分0
7秒前
洋山芋完成签到,获得积分10
7秒前
成熟稳重痴情完成签到,获得积分10
7秒前
steins发布了新的文献求助10
8秒前
张文懿发布了新的文献求助10
9秒前
9秒前
cookie486发布了新的文献求助10
11秒前
左彦完成签到,获得积分10
11秒前
11秒前
善学以致用应助yan采纳,获得10
11秒前
12秒前
雷桑完成签到,获得积分10
12秒前
小蚊子发布了新的文献求助10
13秒前
追梦完成签到 ,获得积分10
15秒前
fire完成签到 ,获得积分10
15秒前
搜集达人应助闪闪向日葵采纳,获得10
17秒前
小风应助梁超采纳,获得20
17秒前
正直虔发布了新的文献求助30
18秒前
小二郎应助jin采纳,获得10
18秒前
xjtuwang0618完成签到,获得积分10
19秒前
乐乐乐乐乐乐应助cookie486采纳,获得10
19秒前
ecnu搬砖人发布了新的文献求助30
19秒前
19秒前
张文懿完成签到,获得积分10
19秒前
20秒前
充电宝应助Phi.Wang采纳,获得10
20秒前
桐桐应助爱笑小蘑菇采纳,获得10
22秒前
22秒前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344653
求助须知:如何正确求助?哪些是违规求助? 2971500
关于积分的说明 8649496
捐赠科研通 2651732
什么是DOI,文献DOI怎么找? 1452073
科研通“疑难数据库(出版商)”最低求助积分说明 672372
邀请新用户注册赠送积分活动 661910