Enhancing software defect prediction: a framework with improved feature selection and ensemble machine learning

计算机科学 特征选择 机器学习 集成学习 人工智能 软件 选择(遗传算法) 特征(语言学) 软件错误 语言学 哲学 程序设计语言
作者
Mansoor Ali,Tehseen Mazhar,Amal Al‐Rasheed,Tariq Shahzad,Yazeed Yasin Ghadi,Muhammad Amir Khan
出处
期刊:PeerJ [PeerJ]
卷期号:10: e1860-e1860
标识
DOI:10.7717/peerj-cs.1860
摘要

Effective software defect prediction is a crucial aspect of software quality assurance, enabling the identification of defective modules before the testing phase. This study aims to propose a comprehensive five-stage framework for software defect prediction, addressing the current challenges in the field. The first stage involves selecting a cleaned version of NASA’s defect datasets, including CM1, JM1, MC2, MW1, PC1, PC3, and PC4, ensuring the data’s integrity. In the second stage, a feature selection technique based on the genetic algorithm is applied to identify the optimal subset of features. In the third stage, three heterogeneous binary classifiers, namely random forest, support vector machine, and naïve Bayes, are implemented as base classifiers. Through iterative tuning, the classifiers are optimized to achieve the highest level of accuracy individually. In the fourth stage, an ensemble machine-learning technique known as voting is applied as a master classifier, leveraging the collective decision-making power of the base classifiers. The final stage evaluates the performance of the proposed framework using five widely recognized performance evaluation measures: precision, recall, accuracy, F-measure, and area under the curve. Experimental results demonstrate that the proposed framework outperforms state-of-the-art ensemble and base classifiers employed in software defect prediction and achieves a maximum accuracy of 95.1%, showing its effectiveness in accurately identifying software defects. The framework also evaluates its efficiency by calculating execution times. Notably, it exhibits enhanced efficiency, significantly reducing the execution times during the training and testing phases by an average of 51.52% and 52.31%, respectively. This reduction contributes to a more computationally economical solution for accurate software defect prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chelsea完成签到,获得积分10
1秒前
1秒前
2秒前
刘西西发布了新的文献求助10
3秒前
rr发布了新的文献求助20
3秒前
科学修仙完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
超级欧皇的好宝宝完成签到 ,获得积分10
4秒前
yydd发布了新的文献求助10
4秒前
5秒前
wu发布了新的文献求助10
5秒前
6秒前
科学修仙发布了新的文献求助10
6秒前
SciGPT应助清脆雪糕采纳,获得10
7秒前
所所应助ceeray23采纳,获得20
7秒前
方賢完成签到,获得积分10
9秒前
一颗葡萄完成签到 ,获得积分10
9秒前
打打应助李博士采纳,获得30
10秒前
陈琛发布了新的文献求助10
10秒前
冰糖葫芦完成签到,获得积分20
10秒前
Fa发布了新的文献求助10
11秒前
摸鱼鱼发布了新的文献求助10
11秒前
李顺利发布了新的文献求助10
12秒前
12秒前
YXM1完成签到,获得积分10
12秒前
MissZhang完成签到,获得积分10
12秒前
12秒前
13秒前
Owen应助红红火火恍恍惚惚采纳,获得10
13秒前
爱听歌的老四完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
乌拉拉完成签到,获得积分10
16秒前
16秒前
17秒前
哈密瓜完成签到,获得积分10
17秒前
transition发布了新的文献求助30
17秒前
zhao完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521532
求助须知:如何正确求助?哪些是违规求助? 4612912
关于积分的说明 14536179
捐赠科研通 4550391
什么是DOI,文献DOI怎么找? 2493651
邀请新用户注册赠送积分活动 1474803
关于科研通互助平台的介绍 1446222