Enhancing software defect prediction: a framework with improved feature selection and ensemble machine learning

计算机科学 特征选择 机器学习 集成学习 人工智能 软件 选择(遗传算法) 特征(语言学) 软件错误 哲学 语言学 程序设计语言
作者
Mansoor Ali,Tehseen Mazhar,Amal Al‐Rasheed,Tariq Shahzad,Yazeed Yasin Ghadi,Muhammad Amir Khan
出处
期刊:PeerJ [PeerJ]
卷期号:10: e1860-e1860
标识
DOI:10.7717/peerj-cs.1860
摘要

Effective software defect prediction is a crucial aspect of software quality assurance, enabling the identification of defective modules before the testing phase. This study aims to propose a comprehensive five-stage framework for software defect prediction, addressing the current challenges in the field. The first stage involves selecting a cleaned version of NASA’s defect datasets, including CM1, JM1, MC2, MW1, PC1, PC3, and PC4, ensuring the data’s integrity. In the second stage, a feature selection technique based on the genetic algorithm is applied to identify the optimal subset of features. In the third stage, three heterogeneous binary classifiers, namely random forest, support vector machine, and naïve Bayes, are implemented as base classifiers. Through iterative tuning, the classifiers are optimized to achieve the highest level of accuracy individually. In the fourth stage, an ensemble machine-learning technique known as voting is applied as a master classifier, leveraging the collective decision-making power of the base classifiers. The final stage evaluates the performance of the proposed framework using five widely recognized performance evaluation measures: precision, recall, accuracy, F-measure, and area under the curve. Experimental results demonstrate that the proposed framework outperforms state-of-the-art ensemble and base classifiers employed in software defect prediction and achieves a maximum accuracy of 95.1%, showing its effectiveness in accurately identifying software defects. The framework also evaluates its efficiency by calculating execution times. Notably, it exhibits enhanced efficiency, significantly reducing the execution times during the training and testing phases by an average of 51.52% and 52.31%, respectively. This reduction contributes to a more computationally economical solution for accurate software defect prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
hans完成签到,获得积分20
2秒前
YouY0123发布了新的文献求助10
3秒前
烂漫的绫完成签到,获得积分20
3秒前
phil发布了新的文献求助10
3秒前
林夕水函发布了新的文献求助10
3秒前
安静台灯发布了新的文献求助10
3秒前
6688完成签到,获得积分10
3秒前
3秒前
乐乐应助研友采纳,获得10
4秒前
4秒前
Sophia发布了新的文献求助10
5秒前
way完成签到,获得积分10
5秒前
hans发布了新的文献求助10
5秒前
Hello应助王sir采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
6688发布了新的文献求助10
8秒前
8秒前
车梓银完成签到 ,获得积分10
8秒前
啊不然嘞发布了新的文献求助10
8秒前
8秒前
852应助gyh采纳,获得10
9秒前
fff完成签到,获得积分20
9秒前
上官若男应助光影采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
所所应助Sophia采纳,获得30
13秒前
火山羊发布了新的文献求助10
14秒前
14秒前
高挑的凤灵完成签到 ,获得积分10
14秒前
小蟹发布了新的文献求助10
14秒前
哈喽完成签到,获得积分10
14秒前
Lucas应助CoverSx采纳,获得10
15秒前
和谐以冬完成签到 ,获得积分10
15秒前
15秒前
慕荣晓英发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786804
求助须知:如何正确求助?哪些是违规求助? 5695899
关于积分的说明 15470615
捐赠科研通 4915507
什么是DOI,文献DOI怎么找? 2645784
邀请新用户注册赠送积分活动 1593495
关于科研通互助平台的介绍 1547840