The self-assemblies of topological complex block copolymers, especially the ABn type miktoarm star ones, are fascinating topics in the soft matter field, which represent typical self-assembly behaviors analogous to those of biological membranes. However, their diverse topological asymmetries and versatile spontaneous curvatures result in rather complex phase separations that deviate significantly from the common mechanisms. Thus, numerous trial-and-error experiments with tremendous parameter space and intricate relationships are needed to study their assemblies. Herein, we applied deep learning technology to decipher the phase behaviors of the miktoarm star block copolymer PEO-s-PS2 in an evaporation-induced self-assembly system. A neural network model was trained from practical experimental data encompassing two polymer properties and three synthesis condition parameters as input variables, which successfully predicted a three-dimensional (3D) synthesis-field diagram and mined the relationship between input parameters and obtained structures. This model demonstrated the highly flexible structure modulation directions of the miktoarm star block copolymer, revealing the correlation between the polymer parameters, synthesis conditions, and the output structures due to the significant influence of the variables on spontaneous curvatures. This work demonstrated the efficiency of a deep learning technique in uncovering the underlying rules of complex self-assembly systems, providing valuable insights into the exploration of soft matter science.