作者
Jie Chen,Xiangyi Kong,Dongrui Wang,Meiqin Zhang
摘要
A simple and universal strategy for fabricating flexible 25 μm platinum (Pt) disk ultramicroelectrodes (UMEs) was proposed, where a pulled borosilicate glass micropipette acted as a mold for shaping the flexible tip with flexible epoxy resin. The whole preparation procedure was highly efficient, enabling 10 or more probes to be manually fabricated within 10 h. Intriguingly, this technique permits an adjustable RG ratio, tip length, and stiffness, which could be tuned according to varying experimental demands. Besides, the electroactive area of the probe could be exposed and made renewable with a thin blade, allowing its reuse in multiple experiments. The flexibility characterization was then employed to optimize the resin/hardener mass ratio of epoxy resin and the tip position during HF etching in the fabrication process, suggesting that more hardener, a larger RG value, or a longer tip length obtained stronger deformation resistance. Subsequently, the as-prepared probe was examined by optical microscopy, cyclic voltammetry, and SECM approach curves. The results demonstrated the probe possessed good geometry with a small RG ratio of less than 3 and exceptional electrochemical properties, and its insulating sheath remained undeformed after blade cutting. Owing to the tip's flexibility, it could be operated in contactless mode with an extremely low working distance and even in contact mode scanning to achieve high spatial resolution and high sensitivity while guaranteeing that the tip and samples would suffer minimal damage if the tip crashed. Finally, the flexible probe was successfully employed in three scanning scenarios where tilted and 3D structured PDMS microchips, a latent fingerprint deposited on the stiff copper sheet, and soft egg white were included. In all, the flexible probe encompasses the advantages of traditional disk UMEs and circumvents their principal drawbacks of tip crash and causing sample scratches, which is thus more compatible with large specimens of 3D structured, stiff, or even soft topography.