已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Climate calibration of the Spring Index model for more accurate broad-scale first leaf predictions

物候学 气候变化 灌木 环境科学 地理 自然地理学 气候学 生态学 生物 地质学
作者
Liang Liu
出处
期刊:Climate Research [Inter-Research Science Center]
卷期号:89: 99-112 被引量:1
标识
DOI:10.3354/cr01708
摘要

Phenological models are needed for forecasting plant and ecosystem responses to climate change. Due to a lack of considering local adaptation induced variations in climatic requirements of plant species for phenological development, traditional uniform/non-spatial models that cover broad geographic regions are susceptible to systematic prediction biases. This study presents a climate calibration method that incorporates climate adaptation patterns of plant species into a widely used Spring Index (SI) First Leaf (FL) model. Multi-year (2009-2021) phenological observation data for a most frequently observed shrub species(common lilac Syringa vulgaris) and a most frequently observed tree species(red maple Acer rubrum) in the eastern USA from the USA-National Phenology Network (USA-NPN) were used to develop and validate the calibrated models. Climatic gradients defined by latitudinal temperature variations were used to predict varied climatic requirements of the populations of each species. Prior to calibration, SI FL predictions showed consistent geographic biases and yielded large prediction errors (especially for red maple, RMSE = 30 d). Calibrated SI FL predictions yielded reduced errors (e.g. RMSE = 16 d for red maple) and were freed from significant geographic biases (α = 0.05) in all cases. The calibration method accounted for both intraspecific and interspecific variations, leading to more accurate broad-scale first leaf predictions for the species tested. The climate-calibrated SI FL allows for more accurate tracking of the onset of spring over extensive geographic areas and would support spatially explicit natural resource and environmental conservation efforts under climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助FLY采纳,获得10
2秒前
3秒前
852应助微光熠采纳,获得10
3秒前
温暖书文完成签到,获得积分10
4秒前
SciGPT应助111采纳,获得10
4秒前
YY发布了新的文献求助30
4秒前
YEM发布了新的文献求助10
4秒前
zhangwenjie完成签到 ,获得积分10
5秒前
慕青应助坚强素采纳,获得30
5秒前
科研通AI2S应助科研通管家采纳,获得30
6秒前
6秒前
ceeray23应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
ceeray23应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
ceeray23应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
ceeray23应助科研通管家采纳,获得10
6秒前
清秀的小刺猬应助施少雄采纳,获得10
8秒前
bai发布了新的文献求助20
8秒前
Ql1987发布了新的文献求助10
9秒前
星熠完成签到,获得积分10
9秒前
10秒前
哆面体完成签到,获得积分10
11秒前
AngeW发布了新的文献求助100
15秒前
万能图书馆应助Bearbiscuit采纳,获得10
15秒前
Akim应助Bearbiscuit采纳,获得10
15秒前
大个应助Bearbiscuit采纳,获得10
15秒前
CodeCraft应助Bearbiscuit采纳,获得10
15秒前
李爱国应助Bearbiscuit采纳,获得10
15秒前
斯文败类应助Bearbiscuit采纳,获得10
15秒前
思源应助Bearbiscuit采纳,获得10
15秒前
英俊的铭应助Bearbiscuit采纳,获得10
16秒前
ding应助Bearbiscuit采纳,获得10
16秒前
情怀应助Bearbiscuit采纳,获得10
16秒前
18秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650260
求助须知:如何正确求助?哪些是违规求助? 4780326
关于积分的说明 15051616
捐赠科研通 4809184
什么是DOI,文献DOI怎么找? 2572075
邀请新用户注册赠送积分活动 1528266
关于科研通互助平台的介绍 1487102