Climate calibration of the Spring Index model for more accurate broad-scale first leaf predictions

物候学 气候变化 灌木 环境科学 地理 自然地理学 气候学 生态学 生物 地质学
作者
Liang Liu
出处
期刊:Climate Research [Inter-Research Science Center]
卷期号:89: 99-112 被引量:1
标识
DOI:10.3354/cr01708
摘要

Phenological models are needed for forecasting plant and ecosystem responses to climate change. Due to a lack of considering local adaptation induced variations in climatic requirements of plant species for phenological development, traditional uniform/non-spatial models that cover broad geographic regions are susceptible to systematic prediction biases. This study presents a climate calibration method that incorporates climate adaptation patterns of plant species into a widely used Spring Index (SI) First Leaf (FL) model. Multi-year (2009-2021) phenological observation data for a most frequently observed shrub species(common lilac Syringa vulgaris) and a most frequently observed tree species(red maple Acer rubrum) in the eastern USA from the USA-National Phenology Network (USA-NPN) were used to develop and validate the calibrated models. Climatic gradients defined by latitudinal temperature variations were used to predict varied climatic requirements of the populations of each species. Prior to calibration, SI FL predictions showed consistent geographic biases and yielded large prediction errors (especially for red maple, RMSE = 30 d). Calibrated SI FL predictions yielded reduced errors (e.g. RMSE = 16 d for red maple) and were freed from significant geographic biases (α = 0.05) in all cases. The calibration method accounted for both intraspecific and interspecific variations, leading to more accurate broad-scale first leaf predictions for the species tested. The climate-calibrated SI FL allows for more accurate tracking of the onset of spring over extensive geographic areas and would support spatially explicit natural resource and environmental conservation efforts under climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡路人发布了新的文献求助10
刚刚
1秒前
1秒前
DYF完成签到,获得积分10
1秒前
FreeRice发布了新的文献求助10
1秒前
徐若楠发布了新的文献求助10
2秒前
NexusExplorer应助7qi采纳,获得10
2秒前
2秒前
鱼鱼鱼完成签到,获得积分10
3秒前
4秒前
sssss发布了新的文献求助10
5秒前
小胖发布了新的文献求助30
5秒前
5秒前
樊念烟发布了新的文献求助10
6秒前
传奇3应助1234采纳,获得10
7秒前
8秒前
Kimi发布了新的文献求助10
8秒前
9秒前
FashionBoy应助如期而至采纳,获得10
9秒前
10秒前
lvwubin完成签到,获得积分10
10秒前
lai发布了新的文献求助10
11秒前
尤珩发布了新的文献求助10
11秒前
852应助徐若楠采纳,获得10
12秒前
芋泥波波发布了新的文献求助10
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
烟花应助theThreeMagi采纳,获得10
13秒前
徐栩栩完成签到,获得积分10
13秒前
科研通AI2S应助科研通管家采纳,获得30
13秒前
13秒前
13秒前
拜了个拜发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
Caffery发布了新的文献求助20
17秒前
桐桐应助tiankaiwen采纳,获得10
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655