亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Climate calibration of the Spring Index model for more accurate broad-scale first leaf predictions

物候学 气候变化 灌木 环境科学 地理 自然地理学 气候学 生态学 生物 地质学
作者
Liang Liu
出处
期刊:Climate Research [Inter-Research Science Center]
卷期号:89: 99-112 被引量:1
标识
DOI:10.3354/cr01708
摘要

Phenological models are needed for forecasting plant and ecosystem responses to climate change. Due to a lack of considering local adaptation induced variations in climatic requirements of plant species for phenological development, traditional uniform/non-spatial models that cover broad geographic regions are susceptible to systematic prediction biases. This study presents a climate calibration method that incorporates climate adaptation patterns of plant species into a widely used Spring Index (SI) First Leaf (FL) model. Multi-year (2009-2021) phenological observation data for a most frequently observed shrub species(common lilac Syringa vulgaris) and a most frequently observed tree species(red maple Acer rubrum) in the eastern USA from the USA-National Phenology Network (USA-NPN) were used to develop and validate the calibrated models. Climatic gradients defined by latitudinal temperature variations were used to predict varied climatic requirements of the populations of each species. Prior to calibration, SI FL predictions showed consistent geographic biases and yielded large prediction errors (especially for red maple, RMSE = 30 d). Calibrated SI FL predictions yielded reduced errors (e.g. RMSE = 16 d for red maple) and were freed from significant geographic biases (α = 0.05) in all cases. The calibration method accounted for both intraspecific and interspecific variations, leading to more accurate broad-scale first leaf predictions for the species tested. The climate-calibrated SI FL allows for more accurate tracking of the onset of spring over extensive geographic areas and would support spatially explicit natural resource and environmental conservation efforts under climate change.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Thien发布了新的文献求助10
1秒前
清浅完成签到 ,获得积分10
2秒前
Thien发布了新的文献求助10
3秒前
欣欣发布了新的文献求助10
5秒前
dlfg发布了新的文献求助10
8秒前
CipherSage应助Pengzhuhuai采纳,获得10
17秒前
FashionBoy应助dlfg采纳,获得10
17秒前
muhum完成签到 ,获得积分10
33秒前
慕青应助过氧化氢采纳,获得30
46秒前
54秒前
小黄鸭完成签到,获得积分10
59秒前
zsmj23完成签到 ,获得积分0
1分钟前
AurorY发布了新的文献求助10
1分钟前
1分钟前
qiuer7应助科研通管家采纳,获得10
1分钟前
Folivo完成签到,获得积分10
1分钟前
1分钟前
扣子完成签到,获得积分10
1分钟前
Pengzhuhuai发布了新的文献求助10
1分钟前
1分钟前
Pengzhuhuai完成签到,获得积分10
1分钟前
过氧化氢发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
Cola发布了新的文献求助10
2分钟前
希望天下0贩的0应助欣欣采纳,获得10
2分钟前
遇上就这样吧应助ruby采纳,获得30
2分钟前
矢思然完成签到,获得积分10
2分钟前
Cola完成签到,获得积分20
2分钟前
2分钟前
欣欣发布了新的文献求助10
2分钟前
2分钟前
111发布了新的文献求助10
2分钟前
2分钟前
110o发布了新的文献求助10
2分钟前
3分钟前
qiuer7应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422553
求助须知:如何正确求助?哪些是违规求助? 4537467
关于积分的说明 14157445
捐赠科研通 4454064
什么是DOI,文献DOI怎么找? 2443173
邀请新用户注册赠送积分活动 1434482
关于科研通互助平台的介绍 1411627