An Adaptive Image Segmentation Network for Surface Defect Detection

人工智能 分割 背景(考古学) 计算机科学 特征(语言学) 合并(版本控制) 块(置换群论) 卷积(计算机科学) 图像分割 模式识别(心理学) 计算机视觉 人工神经网络 情报检索 数学 地理 几何学 哲学 语言学 考古
作者
Taiheng Liu,Zhaoshui He,Zhijie Lin,Guang‐Zhong Cao,Wenqing Su,Shengli Xie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 8510-8523 被引量:39
标识
DOI:10.1109/tnnls.2022.3230426
摘要

Surface defect detection plays an essential role in industry, and it is challenging due to the following problems: 1) the similarity between defect and nondefect texture is very high, which eventually leads to recognition or classification errors and 2) the size of defects is tiny, which are much more difficult to be detected than larger ones. To address such problems, this article proposes an adaptive image segmentation network (AIS-Net) for pixelwise segmentation of surface defects. It consists of three main parts: multishuffle-block dilated convolution (MSDC), dual attention context guidance (DACG), and adaptive category prediction (ACP) modules, where MSDC is designed to merge the multiscale defect features for avoiding the loss of tiny defect feature caused by model depth, DACG is designed to capture more contextual information from the defect feature map for locating defect regions and obtaining clear segmentation boundaries, and ACP is used to make classification and regression for predicting defect categories. Experimental results show that the proposed AIS-Net is superior to the state-of-the-art approaches on four actual surface defect datasets (NEU-DET: 98.38% ± 0.03%, DAGM: 99.25% ± 0.02%, Magnetic-tile: 98.73% ± 0.13%, and MVTec: 99.72% ± 0.02%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助LeoLiu采纳,获得10
1秒前
SciGPT应助Arizaq采纳,获得10
1秒前
zhangyujin发布了新的文献求助10
1秒前
Mr发布了新的文献求助10
1秒前
2秒前
3秒前
lily发布了新的文献求助10
4秒前
4秒前
4秒前
zhiyao2025完成签到,获得积分10
4秒前
CodeCraft应助Lily采纳,获得10
4秒前
晴时有风完成签到,获得积分10
4秒前
卡卡西应助甜儿采纳,获得20
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
JamesPei应助会飞的野马采纳,获得10
6秒前
siestaMiao发布了新的文献求助10
6秒前
美丽梦秋发布了新的文献求助10
6秒前
Tony完成签到,获得积分10
7秒前
dyk完成签到,获得积分10
7秒前
8秒前
123完成签到,获得积分20
8秒前
LPeaQ应助一颗西柚采纳,获得10
8秒前
tigger发布了新的文献求助10
8秒前
8秒前
桃妹发布了新的文献求助10
9秒前
Teresa发布了新的文献求助10
9秒前
yang发布了新的文献求助10
9秒前
苏打发布了新的文献求助10
10秒前
yaoyao发布了新的文献求助10
10秒前
11秒前
11秒前
阿湫发布了新的文献求助10
11秒前
wendinfgmei发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951758
求助须知:如何正确求助?哪些是违规求助? 3497124
关于积分的说明 11086059
捐赠科研通 3227597
什么是DOI,文献DOI怎么找? 1784497
邀请新用户注册赠送积分活动 868586
科研通“疑难数据库(出版商)”最低求助积分说明 801154