碳纳米管
催化作用
密度泛函理论
材料科学
分子
选择性
甲醇
纳米技术
化学工程
色散(光学)
化学物理
化学
计算化学
有机化学
工程类
物理
光学
作者
Jianjun Su,Charles B. Musgrave,Yun Mi Song,Libei Huang,Yong Liu,Geng Li,Yinger Xin,Pei Xiong,Molly Meng‐Jung Li,Hao Ming Chen,Ben Zhong Tang,Marc Robert,William A. Goddard,Ruquan Ye
标识
DOI:10.26434/chemrxiv-2022-r9r22
摘要
Support-induced strain engineering is a powerful strategy to modulate the electronic structure of two-dimensional materials. However, controlling strain of planar molecules such as metallophthalocyanines and metalloporphyrins is technically challenging due to their sub–2 nm lateral size. In addition, the effect of strain on molecular properties remains poorly understood. Starting with cobalt phthalocyanine (CoPc), a model CO2 reduction reaction (CO2RR) catalyst, we show that carbon nanotubes (CNTs) are ideal substrates for inducing optimum properties through molecular curvature. Using a tandem-flow electrolyzer with monodispersed CoPc on single-walled CNTs (CoPc/SWCNT) as the catalyst, we achieve a methanol partial current density of >90 mA cm-2 with a selectivity of >60%. CoPc on wide multi-walled CNTs (MWCNTs) leads to only 16.6% selectivity. We report X-ray spectroscopic characterizations to unravel the distinct local coordinations and electronic structures induced by the strong molecule-support interactions. These results agree with our Grand Canonical Density Functional Theory that calculates the energetics as a function of applied potential. We find that SWCNTs induce curvature in CoPc, which improves *CO binding to enable subsequent formation of methanol, while wide MWCNTs favor CO desorption. Thus, we demonstrate that the SWCNT-induced molecular strain increases methanol formation. We also show that induced strain can accelerate the oxygen reduction reaction and CO2RR for other catalysts. Our results show the important role of SWCNTs beyond catalyst dispersion and electron conduction.
科研通智能强力驱动
Strongly Powered by AbleSci AI