已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improving Molecular Catalyst Activity using Strain-Inducing Carbon Nanotube Supports

碳纳米管 催化作用 密度泛函理论 材料科学 分子 选择性 甲醇 纳米技术 化学工程 色散(光学) 化学物理 化学 计算化学 有机化学 工程类 物理 光学
作者
Jianjun Su,Charles B. Musgrave,Yun Mi Song,Libei Huang,Yong Liu,Geng Li,Yinger Xin,Pei Xiong,Molly Meng‐Jung Li,Hao Ming Chen,Ben Zhong Tang,Marc Robert,William A. Goddard,Ruquan Ye
标识
DOI:10.26434/chemrxiv-2022-r9r22
摘要

Support-induced strain engineering is a powerful strategy to modulate the electronic structure of two-dimensional materials. However, controlling strain of planar molecules such as metallophthalocyanines and metalloporphyrins is technically challenging due to their sub–2 nm lateral size. In addition, the effect of strain on molecular properties remains poorly understood. Starting with cobalt phthalocyanine (CoPc), a model CO2 reduction reaction (CO2RR) catalyst, we show that carbon nanotubes (CNTs) are ideal substrates for inducing optimum properties through molecular curvature. Using a tandem-flow electrolyzer with monodispersed CoPc on single-walled CNTs (CoPc/SWCNT) as the catalyst, we achieve a methanol partial current density of >90 mA cm-2 with a selectivity of >60%. CoPc on wide multi-walled CNTs (MWCNTs) leads to only 16.6% selectivity. We report X-ray spectroscopic characterizations to unravel the distinct local coordinations and electronic structures induced by the strong molecule-support interactions. These results agree with our Grand Canonical Density Functional Theory that calculates the energetics as a function of applied potential. We find that SWCNTs induce curvature in CoPc, which improves *CO binding to enable subsequent formation of methanol, while wide MWCNTs favor CO desorption. Thus, we demonstrate that the SWCNT-induced molecular strain increases methanol formation. We also show that induced strain can accelerate the oxygen reduction reaction and CO2RR for other catalysts. Our results show the important role of SWCNTs beyond catalyst dispersion and electron conduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wdj7171完成签到,获得积分10
3秒前
5秒前
5秒前
丰富的宛亦完成签到 ,获得积分10
8秒前
10秒前
JamesPei应助cxm采纳,获得10
10秒前
咎不可完成签到,获得积分10
11秒前
15秒前
16秒前
Hanmos3624完成签到,获得积分10
16秒前
17秒前
18秒前
zz发布了新的文献求助10
19秒前
19秒前
jing煜发布了新的文献求助10
21秒前
22秒前
enhenlay发布了新的文献求助10
23秒前
24秒前
25秒前
友好擎发布了新的文献求助30
25秒前
zz完成签到,获得积分10
26秒前
科研通AI2S应助老仙翁采纳,获得10
26秒前
26秒前
28秒前
29秒前
默默的篮球完成签到,获得积分10
29秒前
29秒前
852应助ZJX1947采纳,获得10
30秒前
guoyu发布了新的文献求助10
32秒前
34秒前
合适依秋完成签到 ,获得积分10
34秒前
36秒前
ding应助jacob258采纳,获得10
38秒前
39秒前
40秒前
杉进完成签到 ,获得积分10
40秒前
41秒前
41秒前
NexusExplorer应助1234采纳,获得10
41秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241626
求助须知:如何正确求助?哪些是违规求助? 2886118
关于积分的说明 8241740
捐赠科研通 2554651
什么是DOI,文献DOI怎么找? 1382725
科研通“疑难数据库(出版商)”最低求助积分说明 649622
邀请新用户注册赠送积分活动 625295