Maintenance planning is a significant part of predictive maintenance, which involves task planning, resource scheduling, and prevention. With large-scale sensor systems in modern factories, much data will be captured during monitoring and maintenance of complex industrial equipment. Accumulated data facilitates maintenance planning becomes more thorough and timely. Recently, a knowledge graph (KG) was offered to handle large-scale, unorganized maintenance data semantically, resulting in better data usage. Some prior studies have utilized KG for maintenance planning with semantic searching or graph structure-based algorithms, nevertheless neglecting the prediction of potential linkage. To fill this gap, a maintenance-oriented KG is established firstly based on a well-defined domain-specific ontology schema and accumulated maintenance data. Then, an Attention-Based Compressed Relational Graph Convolutional Network is proposed to predict potential solutions and explain fault in maintenance tasks. Lastly, a maintenance case of oil drilling equipment is carried out, where the proposed model is compared with other cutting-edge models to demonstrate its effectiveness in link prediction. This research is anticipated to shed light on future adoption of KG in maintenance planning recommendations.