A Decision-Tree Approach to Identifying Paddy Rice Lodging with Multiple Pieces of Polarization Information Derived from Sentinel-1

环境科学 决策树 农业工程 遥感 雷达 计算机科学 数据挖掘 地理 电信 工程类
作者
Xuemei Dai,Shuisen Chen,Kai Jia,Hao Jiang,Yishan Sun,Dan Li,Qiong Zheng,Jianxi Huang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (1): 240-240 被引量:11
标识
DOI:10.3390/rs15010240
摘要

Lodging is one of the typical abiotic adversities during paddy rice growth. In addition to affecting photosynthesis, it can seriously damage crop growth and development, such as reducing rice quality and hindering automated harvesting. It is, therefore, imperative to accurately and in good time acquire crop-lodging areas for yield prediction, agricultural insurance claims, and disaster-management decisions. However, the accuracy requirements for crop-lodging monitoring remain challenging due to complicated impact factors. Aiming at identifying paddy rice lodging on Shazai Island, Guangdong, China, caused by heavy rainfall and strong wind, a decision-tree model was constructed using multiple-parameter information from Sentinel-1 SAR images and the in situ lodging samples. The model innovatively combined the five backscattering coefficients with five polarization decomposition parameters and quantified the importance of each parameter feature. It was found that the decision-tree method coupled with polarization decomposition can be used to obtain an accurate distribution of paddy rice-lodging areas. The results showed that: (1) Radar parameters can capture the changes in lodged paddy rice. The radar parameters that best distinguish paddy rice lodging are VV, VV+VH, VH/VV, and Span. (2) Span is the parameter with the strongest feature importance, which shows the necessity of adding polarization parameters to the classification model. (3) The dual-polarized Sentinel-1 database classification model can effectively extract the area of lodging paddy rice with an overall accuracy of 84.38%, and a total area precision of 93.18%. These observations can guide the future use of SAR-based information for crop-lodging assessment and post-disaster management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziyue发布了新的文献求助10
刚刚
1秒前
英俊的铭应助RNAPW采纳,获得10
2秒前
July发布了新的文献求助10
2秒前
zz发布了新的文献求助10
3秒前
oi完成签到 ,获得积分10
5秒前
111发布了新的文献求助10
5秒前
5秒前
完美世界应助小刘采纳,获得10
5秒前
5秒前
5秒前
雨0926应助背后卿采纳,获得30
6秒前
李健的小迷弟应助sanages采纳,获得10
6秒前
112发布了新的文献求助10
6秒前
童童完成签到,获得积分10
7秒前
研友_VZG7GZ应助RUINNNO采纳,获得10
8秒前
zy发布了新的文献求助10
8秒前
8秒前
钟钟完成签到,获得积分10
8秒前
8秒前
爆米花应助nmm1111采纳,获得10
8秒前
思源应助zz采纳,获得10
9秒前
童童发布了新的文献求助10
10秒前
nenoaowu发布了新的文献求助10
11秒前
11秒前
小二郎应助Ming采纳,获得10
11秒前
12秒前
CyberHamster完成签到,获得积分10
12秒前
nine发布了新的文献求助10
12秒前
咩啊咩吖应助dabian8999采纳,获得10
12秒前
隐形曼青应助机智的寒天采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
yoyo112233发布了新的文献求助10
13秒前
打打应助熙原采纳,获得10
13秒前
酷酷如楠发布了新的文献求助10
15秒前
Orange发布了新的文献求助10
15秒前
lina发布了新的文献求助20
15秒前
bkagyin应助科研之神磊哥采纳,获得10
16秒前
卜念发布了新的文献求助10
17秒前
三岁完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957081
求助须知:如何正确求助?哪些是违规求助? 4218721
关于积分的说明 13130795
捐赠科研通 4001503
什么是DOI,文献DOI怎么找? 2189873
邀请新用户注册赠送积分活动 1204816
关于科研通互助平台的介绍 1116465