A Decision-Tree Approach to Identifying Paddy Rice Lodging with Multiple Pieces of Polarization Information Derived from Sentinel-1

环境科学 决策树 农业工程 遥感 雷达 计算机科学 数据挖掘 地理 电信 工程类
作者
Xuemei Dai,Shuisen Chen,Kai Jia,Hao Jiang,Yishan Sun,Dan Li,Qiong Zheng,Jianxi Huang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (1): 240-240 被引量:11
标识
DOI:10.3390/rs15010240
摘要

Lodging is one of the typical abiotic adversities during paddy rice growth. In addition to affecting photosynthesis, it can seriously damage crop growth and development, such as reducing rice quality and hindering automated harvesting. It is, therefore, imperative to accurately and in good time acquire crop-lodging areas for yield prediction, agricultural insurance claims, and disaster-management decisions. However, the accuracy requirements for crop-lodging monitoring remain challenging due to complicated impact factors. Aiming at identifying paddy rice lodging on Shazai Island, Guangdong, China, caused by heavy rainfall and strong wind, a decision-tree model was constructed using multiple-parameter information from Sentinel-1 SAR images and the in situ lodging samples. The model innovatively combined the five backscattering coefficients with five polarization decomposition parameters and quantified the importance of each parameter feature. It was found that the decision-tree method coupled with polarization decomposition can be used to obtain an accurate distribution of paddy rice-lodging areas. The results showed that: (1) Radar parameters can capture the changes in lodged paddy rice. The radar parameters that best distinguish paddy rice lodging are VV, VV+VH, VH/VV, and Span. (2) Span is the parameter with the strongest feature importance, which shows the necessity of adding polarization parameters to the classification model. (3) The dual-polarized Sentinel-1 database classification model can effectively extract the area of lodging paddy rice with an overall accuracy of 84.38%, and a total area precision of 93.18%. These observations can guide the future use of SAR-based information for crop-lodging assessment and post-disaster management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zz完成签到 ,获得积分10
1秒前
整齐百褶裙完成签到 ,获得积分10
2秒前
DT完成签到 ,获得积分10
2秒前
无花果应助星空采纳,获得10
2秒前
大雪完成签到 ,获得积分10
2秒前
特大包包完成签到 ,获得积分10
2秒前
liuz53完成签到,获得积分10
3秒前
单薄靖儿完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
w尘发布了新的文献求助10
6秒前
tian完成签到,获得积分10
6秒前
852应助一个小胖子采纳,获得10
7秒前
子非鱼完成签到,获得积分10
7秒前
abb完成签到 ,获得积分10
8秒前
曹毅凯完成签到,获得积分10
8秒前
夏日汽水完成签到 ,获得积分10
8秒前
张一亦可完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
开放芝麻完成签到 ,获得积分10
10秒前
LLLL完成签到,获得积分20
10秒前
11秒前
11秒前
12秒前
wwsss完成签到,获得积分10
13秒前
Polylactic完成签到 ,获得积分10
14秒前
星空发布了新的文献求助10
15秒前
哈哈哈完成签到,获得积分10
16秒前
澄钰羽完成签到,获得积分10
17秒前
加减乘除发布了新的文献求助10
17秒前
肥鹏完成签到,获得积分10
18秒前
能干世倌完成签到,获得积分10
19秒前
杨玉轩完成签到,获得积分10
19秒前
彪壮的绮烟完成签到,获得积分10
19秒前
饭煲完成签到,获得积分10
19秒前
李健应助TT采纳,获得10
19秒前
月yue完成签到,获得积分10
20秒前
温暖的钻石完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671659
求助须知:如何正确求助?哪些是违规求助? 4921045
关于积分的说明 15135488
捐赠科研通 4830525
什么是DOI,文献DOI怎么找? 2587125
邀请新用户注册赠送积分活动 1540733
关于科研通互助平台的介绍 1499131