A Decision-Tree Approach to Identifying Paddy Rice Lodging with Multiple Pieces of Polarization Information Derived from Sentinel-1

环境科学 决策树 农业工程 遥感 雷达 计算机科学 数据挖掘 地理 电信 工程类
作者
Xuemei Dai,Shuisen Chen,Kai Jia,Hao Jiang,Yishan Sun,Dan Li,Qiong Zheng,Jianxi Huang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (1): 240-240 被引量:11
标识
DOI:10.3390/rs15010240
摘要

Lodging is one of the typical abiotic adversities during paddy rice growth. In addition to affecting photosynthesis, it can seriously damage crop growth and development, such as reducing rice quality and hindering automated harvesting. It is, therefore, imperative to accurately and in good time acquire crop-lodging areas for yield prediction, agricultural insurance claims, and disaster-management decisions. However, the accuracy requirements for crop-lodging monitoring remain challenging due to complicated impact factors. Aiming at identifying paddy rice lodging on Shazai Island, Guangdong, China, caused by heavy rainfall and strong wind, a decision-tree model was constructed using multiple-parameter information from Sentinel-1 SAR images and the in situ lodging samples. The model innovatively combined the five backscattering coefficients with five polarization decomposition parameters and quantified the importance of each parameter feature. It was found that the decision-tree method coupled with polarization decomposition can be used to obtain an accurate distribution of paddy rice-lodging areas. The results showed that: (1) Radar parameters can capture the changes in lodged paddy rice. The radar parameters that best distinguish paddy rice lodging are VV, VV+VH, VH/VV, and Span. (2) Span is the parameter with the strongest feature importance, which shows the necessity of adding polarization parameters to the classification model. (3) The dual-polarized Sentinel-1 database classification model can effectively extract the area of lodging paddy rice with an overall accuracy of 84.38%, and a total area precision of 93.18%. These observations can guide the future use of SAR-based information for crop-lodging assessment and post-disaster management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
托托完成签到,获得积分10
2秒前
丘比特应助果小镁采纳,获得10
2秒前
2秒前
dd发布了新的文献求助10
2秒前
科研通AI6应助行者无疆采纳,获得10
6秒前
Hipchengi发布了新的文献求助20
7秒前
7秒前
文静的蜗牛完成签到,获得积分10
9秒前
zh完成签到,获得积分10
11秒前
11秒前
12秒前
果小镁发布了新的文献求助10
13秒前
共享精神应助吕亦寒采纳,获得10
13秒前
斯文败类应助认真的思枫采纳,获得10
14秒前
Jodie发布了新的文献求助10
14秒前
17秒前
彼岸花开发布了新的文献求助10
17秒前
123456发布了新的文献求助10
17秒前
万能图书馆应助张姚采纳,获得10
19秒前
KYTQQ完成签到 ,获得积分10
19秒前
赘婿应助Shubin828采纳,获得10
23秒前
脑洞疼应助蓝色的梦采纳,获得10
23秒前
24秒前
wuya完成签到,获得积分10
24秒前
汝桢完成签到 ,获得积分10
24秒前
wx发布了新的文献求助30
26秒前
27秒前
27秒前
沉默的易烟完成签到,获得积分10
28秒前
慈祥的丹寒完成签到 ,获得积分10
28秒前
素颜发布了新的文献求助10
29秒前
cyclone发布了新的文献求助10
29秒前
科研通AI6应助liar采纳,获得10
30秒前
假装有昵称完成签到 ,获得积分10
30秒前
科研通AI6应助yyanxuemin919采纳,获得10
31秒前
lindoudou完成签到,获得积分10
32秒前
科研通AI6应助cyclone采纳,获得10
32秒前
无头骑士发布了新的文献求助10
33秒前
zbl1314zbl发布了新的文献求助10
33秒前
标致爆米花完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560166
求助须知:如何正确求助?哪些是违规求助? 4645296
关于积分的说明 14674744
捐赠科研通 4586398
什么是DOI,文献DOI怎么找? 2516422
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460870