Defect Detection of Composite Material Terahertz Image Based on Faster Region-Convolutional Neural Networks

太赫兹辐射 卷积神经网络 人工智能 计算机科学 人工神经网络 无损检测 材料科学 模式识别(心理学) 计算机视觉 光电子学 物理 量子力学
作者
Xiuwei Yang,Pingan Liu,Shujie Wang,Biyuan Wu,Kaihua Zhang,Bing Yang,Xiaohu Wu
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:16 (1): 317-317 被引量:8
标识
DOI:10.3390/ma16010317
摘要

Terahertz (THz) nondestructive testing (NDT) technology has been increasingly applied to the internal defect detection of composite materials. However, the THz image is affected by background noise and power limitation, leading to poor THz image quality. The recognition rate based on traditional machine vision algorithms is not high. The above methods are usually unable to determine surface defects in a timely and accurate manner. In this paper, we propose a method to detect the internal defects of composite materials by using terahertz images based on a faster region-convolutional neural networks (faster R-CNNs) algorithm. Terahertz images showing internal defects in composite materials are first acquired by a terahertz time-domain spectroscopy system. Then the terahertz images are filtered, the blurred images are removed, and the remaining images are enhanced with data and annotated with image defects to create a dataset consistent with the internal defects of the material. On the basis of the above work, an improved faster R-CNN algorithm is proposed in this paper. The network can detect various defects in THz images by changing the backbone network, optimising the training parameters, and improving the prior box algorithm to improve the detection accuracy and efficiency of the network. By taking the commonly used composite sandwich structure as a representative, a sample with typical defects is designed, and the image data are obtained through the test. Comparing the proposed method with other existing network methods, the former proves to have the advantages of a short training time and high detection accuracy. The results show that the mean average precision (mAP) without data enhancement reached 95.50%, and the mAP with data enhancement reached 98.35% and exceeded the error rate of human eye detection (5%). Compared with the original faster R-CNN algorithm of 84.39% and 85.12%, the improvement is 11.11% and 10.23%, respectively, which demonstrates superb feature extraction capability and reduces the occurrence of network errors and omissions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
现代的妍完成签到,获得积分20
刚刚
言余应助32采纳,获得20
刚刚
小张z完成签到,获得积分10
刚刚
科研通AI5应助荣往采纳,获得10
刚刚
大模型应助称心曼安采纳,获得10
1秒前
1秒前
隐形曼青应助dalian采纳,获得10
1秒前
萱1988完成签到,获得积分10
1秒前
无奈敏完成签到,获得积分10
2秒前
干干发布了新的文献求助10
2秒前
2秒前
李嘉慧完成签到 ,获得积分10
2秒前
碧蓝的紫寒完成签到,获得积分10
2秒前
科研通AI5应助鱼鱼采纳,获得10
3秒前
youmuyou完成签到,获得积分10
3秒前
bcsunny2022完成签到,获得积分10
3秒前
得意忘言完成签到,获得积分10
3秒前
夜已深完成签到,获得积分10
3秒前
DHR发布了新的文献求助10
4秒前
文献完成签到,获得积分20
4秒前
4秒前
洁净的惜筠完成签到,获得积分10
5秒前
yatou5651完成签到,获得积分10
5秒前
孔雀翎完成签到,获得积分10
5秒前
5秒前
开心的懂发布了新的文献求助10
5秒前
5秒前
6秒前
Emma施施完成签到,获得积分10
6秒前
6秒前
思源应助lx采纳,获得10
7秒前
小鞋发布了新的文献求助10
7秒前
沙漏发布了新的文献求助10
7秒前
8秒前
echoxq完成签到 ,获得积分10
8秒前
10秒前
慕容采文发布了新的文献求助20
10秒前
Jasper应助牙牙采纳,获得10
10秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758540
求助须知:如何正确求助?哪些是违规求助? 3301469
关于积分的说明 10118427
捐赠科研通 3016011
什么是DOI,文献DOI怎么找? 1656352
邀请新用户注册赠送积分活动 790362
科研通“疑难数据库(出版商)”最低求助积分说明 753786