Bright-field and dark-field image fusion for shape-from-focus in microscopy

人工智能 计算机视觉 光学(聚焦) 暗场显微术 保险丝(电气) 图像纹理 纹理(宇宙学) 景深 计算机科学 领域(数学) 图像融合 单眼 图像(数学) 显微镜 光学 图像处理 物理 数学 量子力学 纯数学
作者
Jiale Chen,Xu Zhang
标识
DOI:10.1117/12.2666570
摘要

Shape-From-Focus (SFF) is a technique that can obtain 3D features of objects through monocular cameras, it can be applied with high precision in optical microscopy. However, since SFF relies heavily on the texture information of the object's surface, when the texture of some regions in the object is poor, it always leads to low accuracy or even serious errors in the depth map reconstruction of this region. Most research in SFF has focused on finding and eliminating these low-texture regions, but for the eliminated regions, how to accurately recover the depth information is not well addressed. Less attention has been paid to enriching the texture information of these regions. Considering that bright-field and dark-field light sources often present images with different textures in microscopy, this paper proposes a method to enrich image textures by fusing bright-field and dark-field images. The proposed method needs to acquire two sets of image sequences in bright field and dark field respectively, and fuse the images based on wavelet transform at the same index position in the two sets of image sequences, so that the fused images sequence can retain the high frequency components in both bright and dark field images, the fused set of image sequences is then used for SFF to calculate the depth map. Experimental results with both simulated and real objects are presented to validate the proposed schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甲壬完成签到,获得积分10
2秒前
CarryLJR完成签到,获得积分20
5秒前
6秒前
MZP应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Flanker应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
礼礼应助科研通管家采纳,获得10
6秒前
6秒前
竹子完成签到,获得积分10
7秒前
10秒前
苏辰发布了新的文献求助10
10秒前
10秒前
烟花应助淡然的芷荷采纳,获得10
10秒前
科研通AI2S应助小景采纳,获得10
11秒前
11秒前
aaaaaYue发布了新的文献求助10
12秒前
12秒前
充电宝应助甲壬采纳,获得10
14秒前
damieob完成签到,获得积分10
14秒前
14秒前
cc完成签到,获得积分10
15秒前
道明嗣发布了新的文献求助10
17秒前
Hcw0525发布了新的文献求助10
17秒前
田様应助无奈的翅膀采纳,获得10
19秒前
21秒前
21秒前
无花果应助道明嗣采纳,获得10
23秒前
完美世界应助顷梦采纳,获得10
23秒前
mhl11应助小景采纳,获得10
24秒前
shinysparrow应助jikaku采纳,获得100
25秒前
沐浴清风发布了新的文献求助10
25秒前
乔心发布了新的文献求助10
26秒前
妹控一个发布了新的文献求助10
27秒前
27秒前
29秒前
爆米花应助热情的天蓝采纳,获得30
30秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329591
求助须知:如何正确求助?哪些是违规求助? 2959170
关于积分的说明 8594608
捐赠科研通 2637675
什么是DOI,文献DOI怎么找? 1443672
科研通“疑难数据库(出版商)”最低求助积分说明 668807
邀请新用户注册赠送积分活动 656231