Recognizing Human Activity of Daily Living Using a Flexible Wearable for 3D Spine Pose Tracking

可穿戴计算机 加速度计 计算机科学 弯曲 可穿戴技术 卷积神经网络 人工智能 人工神经网络 模拟 工程类 嵌入式系统 医学 结构工程 病理 操作系统
作者
Mostafa Haghi,Arman Ershadi,Thomas M. Deserno
出处
期刊:Sensors [MDPI AG]
卷期号:23 (4): 2066-2066 被引量:4
标识
DOI:10.3390/s23042066
摘要

The World Health Organization recognizes physical activity as an influencing domain on quality of life. Monitoring, evaluating, and supervising it by wearable devices can contribute to the early detection and progress assessment of diseases such as Alzheimer's, rehabilitation, and exercises in telehealth, as well as abrupt events such as a fall. In this work, we use a non-invasive and non-intrusive flexible wearable device for 3D spine pose measurement to monitor and classify physical activity. We develop a comprehensive protocol that consists of 10 indoor, 4 outdoor, and 8 transition states activities in three categories of static, dynamic, and transition in order to evaluate the applicability of the flexible wearable device in human activity recognition. We implement and compare the performance of three neural networks: long short-term memory (LSTM), convolutional neural network (CNN), and a hybrid model (CNN-LSTM). For ground truth, we use an accelerometer and strips data. LSTM reached an overall classification accuracy of 98% for all activities. The CNN model with accelerometer data delivered better performance in lying down (100%), static (standing = 82%, sitting = 75%), and dynamic (walking = 100%, running = 100%) positions. Data fusion improved the outputs in standing (92%) and sitting (94%), while LSTM with the strips data yielded a better performance in bending-related activities (bending forward = 49%, bending backward = 88%, bending right = 92%, and bending left = 100%), the combination of data fusion and principle components analysis further strengthened the output (bending forward = 100%, bending backward = 89%, bending right = 100%, and bending left = 100%). Moreover, the LSTM model detected the first transition state that is similar to fall with the accuracy of 84%. The results show that the wearable device can be used in a daily routine for activity monitoring, recognition, and exercise supervision, but still needs further improvement for fall detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶俊啵啵完成签到 ,获得积分10
1秒前
啊唔完成签到 ,获得积分10
2秒前
阳光万声完成签到 ,获得积分10
3秒前
疯狂吃辣完成签到 ,获得积分10
6秒前
wang完成签到 ,获得积分10
8秒前
向往生活发布了新的文献求助10
9秒前
9秒前
吃吃货完成签到 ,获得积分10
9秒前
李凤凤完成签到 ,获得积分10
13秒前
daheeeee发布了新的文献求助10
14秒前
葛怀锐完成签到 ,获得积分10
18秒前
杠赛来完成签到,获得积分10
18秒前
20秒前
daheeeee完成签到,获得积分10
21秒前
Lucas应助科研通管家采纳,获得10
22秒前
小张应助科研通管家采纳,获得10
22秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
科研通AI2S应助清风徐来采纳,获得10
23秒前
罗氏集团完成签到,获得积分10
23秒前
shen完成签到 ,获得积分10
24秒前
调皮从筠完成签到 ,获得积分10
26秒前
阿浮完成签到 ,获得积分10
26秒前
向往生活完成签到,获得积分10
26秒前
26秒前
ira完成签到,获得积分10
27秒前
周瓦特发布了新的文献求助10
31秒前
asheng98完成签到 ,获得积分10
33秒前
爆米花应助周瓦特采纳,获得10
36秒前
吴兰田完成签到,获得积分10
37秒前
榆木小鸟完成签到 ,获得积分10
37秒前
Simpson完成签到 ,获得积分10
39秒前
z1y1p1完成签到,获得积分10
39秒前
嬗变的天秤完成签到,获得积分10
43秒前
科研铁人完成签到 ,获得积分10
43秒前
情怀应助超帅的凌翠采纳,获得10
46秒前
dhdhg完成签到 ,获得积分10
50秒前
Supermao完成签到 ,获得积分10
55秒前
小giao吃不饱完成签到 ,获得积分10
56秒前
俏皮诺言发布了新的文献求助10
56秒前
janer完成签到 ,获得积分10
58秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134035
求助须知:如何正确求助?哪些是违规求助? 2784851
关于积分的说明 7768939
捐赠科研通 2440310
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624945
版权声明 600792