已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recognizing Human Activity of Daily Living Using a Flexible Wearable for 3D Spine Pose Tracking

可穿戴计算机 加速度计 计算机科学 弯曲 可穿戴技术 卷积神经网络 人工智能 人工神经网络 模拟 工程类 嵌入式系统 医学 结构工程 操作系统 病理
作者
Mostafa Haghi,Arman Ershadi,Thomas M. Deserno
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (4): 2066-2066 被引量:4
标识
DOI:10.3390/s23042066
摘要

The World Health Organization recognizes physical activity as an influencing domain on quality of life. Monitoring, evaluating, and supervising it by wearable devices can contribute to the early detection and progress assessment of diseases such as Alzheimer's, rehabilitation, and exercises in telehealth, as well as abrupt events such as a fall. In this work, we use a non-invasive and non-intrusive flexible wearable device for 3D spine pose measurement to monitor and classify physical activity. We develop a comprehensive protocol that consists of 10 indoor, 4 outdoor, and 8 transition states activities in three categories of static, dynamic, and transition in order to evaluate the applicability of the flexible wearable device in human activity recognition. We implement and compare the performance of three neural networks: long short-term memory (LSTM), convolutional neural network (CNN), and a hybrid model (CNN-LSTM). For ground truth, we use an accelerometer and strips data. LSTM reached an overall classification accuracy of 98% for all activities. The CNN model with accelerometer data delivered better performance in lying down (100%), static (standing = 82%, sitting = 75%), and dynamic (walking = 100%, running = 100%) positions. Data fusion improved the outputs in standing (92%) and sitting (94%), while LSTM with the strips data yielded a better performance in bending-related activities (bending forward = 49%, bending backward = 88%, bending right = 92%, and bending left = 100%), the combination of data fusion and principle components analysis further strengthened the output (bending forward = 100%, bending backward = 89%, bending right = 100%, and bending left = 100%). Moreover, the LSTM model detected the first transition state that is similar to fall with the accuracy of 84%. The results show that the wearable device can be used in a daily routine for activity monitoring, recognition, and exercise supervision, but still needs further improvement for fall detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
8秒前
王桑完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
林谩完成签到,获得积分10
14秒前
zcc111完成签到,获得积分10
17秒前
1851611453完成签到 ,获得积分10
18秒前
aprise完成签到 ,获得积分10
19秒前
严珍珍完成签到 ,获得积分10
21秒前
蓝桥兰灯完成签到,获得积分10
21秒前
隐形曼青应助欣一采纳,获得10
22秒前
菲菲不是飞飞完成签到,获得积分10
23秒前
艺高人胆大鸡腿完成签到 ,获得积分10
24秒前
dzj完成签到 ,获得积分10
28秒前
依依发布了新的文献求助10
28秒前
29秒前
30秒前
机灵的以旋完成签到,获得积分10
32秒前
欣一发布了新的文献求助10
34秒前
江姜酱先生完成签到,获得积分10
34秒前
莱芙发布了新的文献求助10
35秒前
俏皮绝山完成签到 ,获得积分10
36秒前
毛哥看文献完成签到 ,获得积分10
37秒前
今后应助依依采纳,获得10
41秒前
42秒前
Fn完成签到 ,获得积分10
43秒前
lifenghou完成签到 ,获得积分10
43秒前
澡雪完成签到,获得积分10
47秒前
Oculus完成签到 ,获得积分10
49秒前
情怀应助莱芙采纳,获得10
53秒前
53秒前
SC完成签到,获得积分10
53秒前
蒸芋芋了完成签到,获得积分10
55秒前
洸彦完成签到 ,获得积分10
57秒前
尾号6533完成签到,获得积分20
59秒前
sss完成签到 ,获得积分10
59秒前
Jason完成签到 ,获得积分10
1分钟前
张辰熙完成签到 ,获得积分10
1分钟前
zouxuan发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956943
求助须知:如何正确求助?哪些是违规求助? 3503011
关于积分的说明 11110935
捐赠科研通 3234007
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234