亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LSNet: Lightweight Spatial Boosting Network for Detecting Salient Objects in RGB-Thermal Images

计算机科学 Boosting(机器学习) RGB颜色模型 人工智能 特征提取 帧速率 骨干网 深度学习 计算机视觉 模式识别(心理学) 计算机网络
作者
Wujie Zhou,Yun Zhu,Jingsheng Lei,Rongwang Yang,Lu Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1329-1340 被引量:188
标识
DOI:10.1109/tip.2023.3242775
摘要

Most recent methods for RGB (red-green-blue)-thermal salient object detection (SOD) involve several floating-point operations and have numerous parameters, resulting in slow inference, especially on common processors, and impeding their deployment on mobile devices for practical applications. To address these problems, we propose a lightweight spatial boosting network (LSNet) for efficient RGB-thermal SOD with a lightweight MobileNetV2 backbone to replace a conventional backbone (e.g., VGG, ResNet). To improve feature extraction using a lightweight backbone, we propose a boundary boosting algorithm that optimizes the predicted saliency maps and reduces information collapse in low-dimensional features. The algorithm generates boundary maps based on predicted saliency maps without incurring additional calculations or complexity. As multimodality processing is essential for high-performance SOD, we adopt attentive feature distillation and selection and propose semantic and geometric transfer learning to enhance the backbone without increasing the complexity during testing. Experimental results demonstrate that the proposed LSNet achieves state-of-the-art performance compared with 14 RGB-thermal SOD methods on three datasets while improving the numbers of floating-point operations (1.025G) and parameters (5.39M), model size (22.1 MB), and inference speed (9.95 fps for PyTorch, batch size of 1, and Intel i5-7500 processor; 93.53 fps for PyTorch, batch size of 1, and NVIDIA TITAN V graphics processor; 936.68 fps for PyTorch, batch size of 20, and graphics processor; 538.01 fps for TensorRT and batch size of 1; and 903.01 fps for TensorRT/FP16 and batch size of 1). The code and results can be found from the link of https://github.com/zyrant/LSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果王子6699完成签到 ,获得积分10
刚刚
刚刚
王彤彤完成签到,获得积分10
3秒前
打打应助Moo5_zzZ采纳,获得30
7秒前
羽毛完成签到,获得积分20
7秒前
慕青应助zjq采纳,获得10
8秒前
羽毛发布了新的文献求助10
10秒前
小张完成签到 ,获得积分10
11秒前
李健应助愉快的平松采纳,获得20
13秒前
13秒前
无猫人士想养猫完成签到,获得积分10
14秒前
秦明完成签到 ,获得积分10
16秒前
liu完成签到 ,获得积分10
16秒前
科目三应助羽毛采纳,获得10
17秒前
zjq发布了新的文献求助10
18秒前
23秒前
ddd完成签到 ,获得积分10
25秒前
Moo5_zzZ发布了新的文献求助30
27秒前
talent发布了新的文献求助10
33秒前
Ava应助Moo5_zzZ采纳,获得30
34秒前
圈圈完成签到 ,获得积分10
37秒前
田様应助兴尽晚回舟采纳,获得10
45秒前
shhoing应助科研通管家采纳,获得10
46秒前
FashionBoy应助科研通管家采纳,获得10
46秒前
46秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
Owen应助科研通管家采纳,获得10
47秒前
47秒前
华仔应助ttsx采纳,获得10
55秒前
59秒前
从容冰淇淋完成签到,获得积分10
1分钟前
1分钟前
Moo5_zzZ发布了新的文献求助30
1分钟前
1分钟前
ttsx发布了新的文献求助10
1分钟前
1分钟前
李爱国应助小张采纳,获得10
1分钟前
汉堡包应助Moo5_zzZ采纳,获得30
1分钟前
逆光完成签到 ,获得积分10
1分钟前
天天快乐应助stay采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543077
求助须知:如何正确求助?哪些是违规求助? 4629202
关于积分的说明 14610993
捐赠科研通 4570495
什么是DOI,文献DOI怎么找? 2505794
邀请新用户注册赠送积分活动 1483074
关于科研通互助平台的介绍 1454374