LSNet: Lightweight Spatial Boosting Network for Detecting Salient Objects in RGB-Thermal Images

计算机科学 Boosting(机器学习) RGB颜色模型 人工智能 特征提取 帧速率 骨干网 深度学习 计算机视觉 模式识别(心理学) 计算机网络
作者
Wujie Zhou,Yun Zhu,Jingsheng Lei,Rongwang Yang,Lu Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1329-1340 被引量:64
标识
DOI:10.1109/tip.2023.3242775
摘要

Most recent methods for RGB (red-green-blue)-thermal salient object detection (SOD) involve several floating-point operations and have numerous parameters, resulting in slow inference, especially on common processors, and impeding their deployment on mobile devices for practical applications. To address these problems, we propose a lightweight spatial boosting network (LSNet) for efficient RGB-thermal SOD with a lightweight MobileNetV2 backbone to replace a conventional backbone (e.g., VGG, ResNet). To improve feature extraction using a lightweight backbone, we propose a boundary boosting algorithm that optimizes the predicted saliency maps and reduces information collapse in low-dimensional features. The algorithm generates boundary maps based on predicted saliency maps without incurring additional calculations or complexity. As multimodality processing is essential for high-performance SOD, we adopt attentive feature distillation and selection and propose semantic and geometric transfer learning to enhance the backbone without increasing the complexity during testing. Experimental results demonstrate that the proposed LSNet achieves state-of-the-art performance compared with 14 RGB-thermal SOD methods on three datasets while improving the numbers of floating-point operations (1.025G) and parameters (5.39M), model size (22.1 MB), and inference speed (9.95 fps for PyTorch, batch size of 1, and Intel i5-7500 processor; 93.53 fps for PyTorch, batch size of 1, and NVIDIA TITAN V graphics processor; 936.68 fps for PyTorch, batch size of 20, and graphics processor; 538.01 fps for TensorRT and batch size of 1; and 903.01 fps for TensorRT/FP16 and batch size of 1). The code and results can be found from the link of https://github.com/zyrant/LSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
舒适怀寒完成签到 ,获得积分10
1秒前
miao应助孙淼采纳,获得20
2秒前
小马甲应助孙淼采纳,获得10
2秒前
7秒前
Jiatu_Li发布了新的文献求助10
7秒前
英吉利25发布了新的文献求助10
11秒前
13秒前
14秒前
CodeCraft应助zzydada采纳,获得20
15秒前
yangL完成签到,获得积分10
15秒前
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
17秒前
Hello应助科研通管家采纳,获得10
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得50
17秒前
哈哈哈哈发布了新的文献求助10
18秒前
二十又澪完成签到,获得积分10
18秒前
19秒前
yangL发布了新的文献求助10
19秒前
千跃完成签到,获得积分10
21秒前
阿甲发布了新的文献求助10
21秒前
22秒前
隐形曼青应助Jiatu_Li采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425