LSNet: Lightweight Spatial Boosting Network for Detecting Salient Objects in RGB-Thermal Images

计算机科学 Boosting(机器学习) RGB颜色模型 人工智能 特征提取 帧速率 骨干网 深度学习 计算机视觉 模式识别(心理学) 计算机网络
作者
Wujie Zhou,Yun Zhu,Jingsheng Lei,Rongwang Yang,Lu Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1329-1340 被引量:126
标识
DOI:10.1109/tip.2023.3242775
摘要

Most recent methods for RGB (red-green-blue)-thermal salient object detection (SOD) involve several floating-point operations and have numerous parameters, resulting in slow inference, especially on common processors, and impeding their deployment on mobile devices for practical applications. To address these problems, we propose a lightweight spatial boosting network (LSNet) for efficient RGB-thermal SOD with a lightweight MobileNetV2 backbone to replace a conventional backbone (e.g., VGG, ResNet). To improve feature extraction using a lightweight backbone, we propose a boundary boosting algorithm that optimizes the predicted saliency maps and reduces information collapse in low-dimensional features. The algorithm generates boundary maps based on predicted saliency maps without incurring additional calculations or complexity. As multimodality processing is essential for high-performance SOD, we adopt attentive feature distillation and selection and propose semantic and geometric transfer learning to enhance the backbone without increasing the complexity during testing. Experimental results demonstrate that the proposed LSNet achieves state-of-the-art performance compared with 14 RGB-thermal SOD methods on three datasets while improving the numbers of floating-point operations (1.025G) and parameters (5.39M), model size (22.1 MB), and inference speed (9.95 fps for PyTorch, batch size of 1, and Intel i5-7500 processor; 93.53 fps for PyTorch, batch size of 1, and NVIDIA TITAN V graphics processor; 936.68 fps for PyTorch, batch size of 20, and graphics processor; 538.01 fps for TensorRT and batch size of 1; and 903.01 fps for TensorRT/FP16 and batch size of 1). The code and results can be found from the link of https://github.com/zyrant/LSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小猪快跑完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
平凡的七月完成签到,获得积分10
4秒前
彪壮的亦瑶完成签到 ,获得积分10
4秒前
6秒前
新宇星辰发布了新的文献求助10
7秒前
lucida0505发布了新的文献求助10
7秒前
赖哈哈完成签到 ,获得积分20
7秒前
8秒前
10秒前
辣椒油发布了新的文献求助10
10秒前
123发布了新的文献求助10
11秒前
帅气小刺猬完成签到,获得积分10
12秒前
12秒前
NIU完成签到,获得积分20
13秒前
13秒前
13秒前
13秒前
Zx_1993应助weiv采纳,获得20
15秒前
粗犷的小凡完成签到,获得积分10
15秒前
小二郎应助lll采纳,获得10
16秒前
16秒前
yan发布了新的文献求助10
16秒前
韶诗珊完成签到 ,获得积分10
17秒前
hopen完成签到 ,获得积分10
17秒前
乃思发布了新的文献求助10
17秒前
23582发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
鹈鹕镇钓鱼大王666完成签到 ,获得积分10
19秒前
luckyblue完成签到,获得积分10
19秒前
隐形曼青应助卢建军采纳,获得80
19秒前
南国之霄发布了新的文献求助10
20秒前
123完成签到,获得积分20
20秒前
你不喂冷风完成签到,获得积分10
21秒前
健壮绍辉应助风中的芷蕾采纳,获得10
21秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419966
求助须知:如何正确求助?哪些是违规求助? 4535178
关于积分的说明 14148588
捐赠科研通 4451975
什么是DOI,文献DOI怎么找? 2441982
邀请新用户注册赠送积分活动 1433488
关于科研通互助平台的介绍 1410732