LSNet: Lightweight Spatial Boosting Network for Detecting Salient Objects in RGB-Thermal Images

计算机科学 Boosting(机器学习) RGB颜色模型 人工智能 特征提取 帧速率 骨干网 深度学习 计算机视觉 模式识别(心理学) 计算机网络
作者
Wujie Zhou,Yun Zhu,Jingsheng Lei,Rongwang Yang,Lu Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1329-1340 被引量:188
标识
DOI:10.1109/tip.2023.3242775
摘要

Most recent methods for RGB (red-green-blue)-thermal salient object detection (SOD) involve several floating-point operations and have numerous parameters, resulting in slow inference, especially on common processors, and impeding their deployment on mobile devices for practical applications. To address these problems, we propose a lightweight spatial boosting network (LSNet) for efficient RGB-thermal SOD with a lightweight MobileNetV2 backbone to replace a conventional backbone (e.g., VGG, ResNet). To improve feature extraction using a lightweight backbone, we propose a boundary boosting algorithm that optimizes the predicted saliency maps and reduces information collapse in low-dimensional features. The algorithm generates boundary maps based on predicted saliency maps without incurring additional calculations or complexity. As multimodality processing is essential for high-performance SOD, we adopt attentive feature distillation and selection and propose semantic and geometric transfer learning to enhance the backbone without increasing the complexity during testing. Experimental results demonstrate that the proposed LSNet achieves state-of-the-art performance compared with 14 RGB-thermal SOD methods on three datasets while improving the numbers of floating-point operations (1.025G) and parameters (5.39M), model size (22.1 MB), and inference speed (9.95 fps for PyTorch, batch size of 1, and Intel i5-7500 processor; 93.53 fps for PyTorch, batch size of 1, and NVIDIA TITAN V graphics processor; 936.68 fps for PyTorch, batch size of 20, and graphics processor; 538.01 fps for TensorRT and batch size of 1; and 903.01 fps for TensorRT/FP16 and batch size of 1). The code and results can be found from the link of https://github.com/zyrant/LSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴真好发布了新的文献求助10
刚刚
科研通AI6应助令和采纳,获得10
1秒前
G1234完成签到,获得积分20
1秒前
1秒前
1秒前
2秒前
2秒前
orixero应助小凯采纳,获得10
3秒前
格林维度完成签到 ,获得积分10
3秒前
hhh发布了新的文献求助10
3秒前
小锅完成签到,获得积分10
3秒前
西瓜妹发布了新的文献求助10
3秒前
Jasper应助ee采纳,获得10
3秒前
4秒前
4秒前
浮游应助粗暴的达采纳,获得10
4秒前
情怀应助粗暴的达采纳,获得10
4秒前
满意的春天完成签到,获得积分10
4秒前
我是老大应助粗暴的达采纳,获得10
4秒前
科研通AI6应助粗暴的达采纳,获得10
4秒前
4秒前
慕青应助粗暴的达采纳,获得10
4秒前
思源应助yu采纳,获得10
5秒前
5秒前
张博发布了新的文献求助10
6秒前
好的哥发布了新的文献求助10
7秒前
忘的澜发布了新的文献求助10
7秒前
科研通AI2S应助wulanshu采纳,获得10
8秒前
香蕉觅云应助随遇而安采纳,获得10
8秒前
李爱国应助常常采纳,获得10
8秒前
Orange应助star采纳,获得10
8秒前
8秒前
9秒前
9秒前
科研通AI6应助CHENJINXI采纳,获得10
9秒前
悦耳人生发布了新的文献求助10
9秒前
王多肉发布了新的文献求助10
10秒前
10秒前
科研通AI6应助555采纳,获得10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625544
求助须知:如何正确求助?哪些是违规求助? 4711411
关于积分的说明 14955483
捐赠科研通 4779507
什么是DOI,文献DOI怎么找? 2553786
邀请新用户注册赠送积分活动 1515698
关于科研通互助平台的介绍 1475905