LSNet: Lightweight Spatial Boosting Network for Detecting Salient Objects in RGB-Thermal Images

计算机科学 Boosting(机器学习) RGB颜色模型 人工智能 特征提取 帧速率 骨干网 深度学习 计算机视觉 模式识别(心理学) 计算机网络
作者
Wujie Zhou,Yun Zhu,Jingsheng Lei,Rongwang Yang,Lu Yu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1329-1340 被引量:188
标识
DOI:10.1109/tip.2023.3242775
摘要

Most recent methods for RGB (red-green-blue)-thermal salient object detection (SOD) involve several floating-point operations and have numerous parameters, resulting in slow inference, especially on common processors, and impeding their deployment on mobile devices for practical applications. To address these problems, we propose a lightweight spatial boosting network (LSNet) for efficient RGB-thermal SOD with a lightweight MobileNetV2 backbone to replace a conventional backbone (e.g., VGG, ResNet). To improve feature extraction using a lightweight backbone, we propose a boundary boosting algorithm that optimizes the predicted saliency maps and reduces information collapse in low-dimensional features. The algorithm generates boundary maps based on predicted saliency maps without incurring additional calculations or complexity. As multimodality processing is essential for high-performance SOD, we adopt attentive feature distillation and selection and propose semantic and geometric transfer learning to enhance the backbone without increasing the complexity during testing. Experimental results demonstrate that the proposed LSNet achieves state-of-the-art performance compared with 14 RGB-thermal SOD methods on three datasets while improving the numbers of floating-point operations (1.025G) and parameters (5.39M), model size (22.1 MB), and inference speed (9.95 fps for PyTorch, batch size of 1, and Intel i5-7500 processor; 93.53 fps for PyTorch, batch size of 1, and NVIDIA TITAN V graphics processor; 936.68 fps for PyTorch, batch size of 20, and graphics processor; 538.01 fps for TensorRT and batch size of 1; and 903.01 fps for TensorRT/FP16 and batch size of 1). The code and results can be found from the link of https://github.com/zyrant/LSNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗又柔发布了新的文献求助30
1秒前
鳗鱼静珊发布了新的文献求助10
2秒前
lu发布了新的文献求助10
2秒前
xll发布了新的文献求助10
2秒前
SUDA发布了新的文献求助10
3秒前
思源应助翟文斌采纳,获得10
3秒前
4秒前
liuhuanghuai发布了新的文献求助10
5秒前
Nell发布了新的文献求助20
5秒前
悠悠发布了新的文献求助10
6秒前
张莹莹完成签到,获得积分10
6秒前
上官若男应助椰子采纳,获得10
7秒前
wzm发布了新的文献求助20
8秒前
8秒前
8秒前
Heartar完成签到,获得积分10
9秒前
ru发布了新的文献求助10
9秒前
今后应助土豪的梦秋采纳,获得10
9秒前
wy完成签到,获得积分10
11秒前
背后思卉应助yss采纳,获得10
11秒前
11秒前
11秒前
英俊的铭应助青馨花语采纳,获得10
12秒前
漏漏漏发布了新的文献求助10
12秒前
12秒前
13秒前
LiCQ发布了新的文献求助10
13秒前
13秒前
怡然的灯泡完成签到 ,获得积分10
14秒前
14秒前
大个应助ZM采纳,获得10
14秒前
15秒前
17秒前
zzz发布了新的文献求助10
17秒前
蓝天应助独特的又菱采纳,获得10
18秒前
ghtsmile发布了新的文献求助10
18秒前
Jasper应助大胆的若灵采纳,获得10
19秒前
稳重香芦发布了新的文献求助10
20秒前
翟淑雨完成签到,获得积分10
21秒前
风筝有风发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588775
求助须知:如何正确求助?哪些是违规求助? 4671698
关于积分的说明 14788654
捐赠科研通 4626241
什么是DOI,文献DOI怎么找? 2531957
邀请新用户注册赠送积分活动 1500530
关于科研通互助平台的介绍 1468329