清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multifold Cross-Validation Model Averaging for Generalized Additive Partial Linear Models

估计员 选型 平滑的 数学 广义线性模型 线性模型 协变量 交叉验证 广义加性模型 加性模型 非参数统计 数学优化 度量(数据仓库) 渐近最优算法 应用数学 计算机科学 统计 数据挖掘
作者
Ze Chen,Jun Liao,Wangli Xu,Yuhong Yang
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:32 (4): 1649-1659
标识
DOI:10.1080/10618600.2023.2174127
摘要

Generalized Additive Partial Linear Models (GAPLMs) are appealing for model interpretation and prediction. However, for GAPLMs, the covariates and the degree of smoothing in the nonparametric parts are often difficult to determine in practice. To address this model selection uncertainty issue, we develop a computationally feasible Model Averaging (MA) procedure. The model weights are data-driven and selected based on multifold Cross-Validation (CV) (instead of leave-one-out) for computational saving. When all the candidate models are misspecified, we show that the proposed MA estimator for GAPLMs is asymptotically optimal in the sense of achieving the lowest possible Kullback-Leibler loss. In the other scenario where the candidate model set contains at least one quasi-correct model, the weights chosen by the multifold CV are asymptotically concentrated on the quasi-correct models. As a by-product, we propose a variable importance measure to quantify the importances of the predictors in GAPLMs based on the MA weights. It is shown to be able to asymptotically identify the variables in the true model. Moreover, when the number of candidate models is very large, a model screening method is provided. Numerical experiments show the superiority of the proposed MA method over some existing model averaging and selection methods. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
21秒前
37秒前
1分钟前
1分钟前
1分钟前
axiao完成签到,获得积分10
1分钟前
asdf发布了新的文献求助30
1分钟前
1分钟前
axiao发布了新的文献求助10
1分钟前
asdf完成签到,获得积分10
1分钟前
CodeCraft应助whiter采纳,获得10
1分钟前
1分钟前
2分钟前
whiter发布了新的文献求助10
2分钟前
whiter完成签到,获得积分10
2分钟前
lanxinge完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
liwang9301完成签到,获得积分10
3分钟前
4分钟前
碧蓝雁风完成签到 ,获得积分10
4分钟前
几两完成签到 ,获得积分10
4分钟前
4分钟前
yxl要顺利毕业_发6篇C完成签到,获得积分10
4分钟前
Setlla完成签到 ,获得积分10
5分钟前
Hello应助山间的话采纳,获得10
5分钟前
5分钟前
山间的话发布了新的文献求助10
5分钟前
howgoods完成签到 ,获得积分10
6分钟前
6分钟前
桥西小河完成签到 ,获得积分10
6分钟前
李健的小迷弟应助lovelife采纳,获得10
7分钟前
7分钟前
小嚣张完成签到,获得积分10
7分钟前
充电宝应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
alanbike完成签到,获得积分10
7分钟前
8分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965722
求助须知:如何正确求助?哪些是违规求助? 3510967
关于积分的说明 11155723
捐赠科研通 3245436
什么是DOI,文献DOI怎么找? 1792903
邀请新用户注册赠送积分活动 874184
科研通“疑难数据库(出版商)”最低求助积分说明 804229