Multifold Cross-Validation Model Averaging for Generalized Additive Partial Linear Models

估计员 选型 平滑的 数学 广义线性模型 线性模型 协变量 交叉验证 广义加性模型 加性模型 非参数统计 数学优化 度量(数据仓库) 渐近最优算法 应用数学 计算机科学 统计 数据挖掘
作者
Ze Chen,Jun Liao,Wangli Xu,Yuhong Yang
出处
期刊:Journal of Computational and Graphical Statistics [Informa]
卷期号:32 (4): 1649-1659
标识
DOI:10.1080/10618600.2023.2174127
摘要

Generalized Additive Partial Linear Models (GAPLMs) are appealing for model interpretation and prediction. However, for GAPLMs, the covariates and the degree of smoothing in the nonparametric parts are often difficult to determine in practice. To address this model selection uncertainty issue, we develop a computationally feasible Model Averaging (MA) procedure. The model weights are data-driven and selected based on multifold Cross-Validation (CV) (instead of leave-one-out) for computational saving. When all the candidate models are misspecified, we show that the proposed MA estimator for GAPLMs is asymptotically optimal in the sense of achieving the lowest possible Kullback-Leibler loss. In the other scenario where the candidate model set contains at least one quasi-correct model, the weights chosen by the multifold CV are asymptotically concentrated on the quasi-correct models. As a by-product, we propose a variable importance measure to quantify the importances of the predictors in GAPLMs based on the MA weights. It is shown to be able to asymptotically identify the variables in the true model. Moreover, when the number of candidate models is very large, a model screening method is provided. Numerical experiments show the superiority of the proposed MA method over some existing model averaging and selection methods. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的紫霜关注了科研通微信公众号
刚刚
2秒前
123完成签到,获得积分10
3秒前
123发布了新的文献求助10
3秒前
5秒前
5秒前
6秒前
开放剑鬼完成签到,获得积分10
7秒前
孟孟发布了新的文献求助10
8秒前
感冒灵999完成签到,获得积分20
10秒前
10秒前
Lucas应助zzz采纳,获得10
11秒前
11秒前
janejane发布了新的文献求助10
11秒前
13秒前
14秒前
感冒灵999发布了新的文献求助30
14秒前
17秒前
乐乐应助winterm采纳,获得10
17秒前
17秒前
科研通AI2S应助云云采纳,获得10
18秒前
一汁蟹完成签到,获得积分10
19秒前
19秒前
19秒前
zzz完成签到,获得积分10
20秒前
呼风唤雨发布了新的文献求助30
20秒前
20秒前
科研小企鹅完成签到,获得积分20
20秒前
雅2018完成签到 ,获得积分0
21秒前
小明发布了新的文献求助10
22秒前
22秒前
淳之风发布了新的文献求助10
23秒前
yy发布了新的文献求助10
23秒前
swh完成签到 ,获得积分10
24秒前
orixero应助呼风唤雨采纳,获得10
26秒前
xjcy应助乐乐乐乐乐乐采纳,获得10
26秒前
Erintsai完成签到 ,获得积分10
27秒前
情怀应助li采纳,获得10
27秒前
CipherSage应助亦屿森采纳,获得10
29秒前
执着幻然完成签到,获得积分10
30秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046