An artificial neural network-based data filling approach for smart operation of digital wastewater treatment plants

缺少数据 计算机科学 数字化 可解释性 人工神经网络 数据挖掘 人工智能 机器学习 电信
作者
Yu Shen,Huimin Li,Bing Zhang,Yang Cao,Zhiwei Guo,Xu Gao,You‐Peng Chen
出处
期刊:Environmental Research [Elsevier]
卷期号:224: 115549-115549 被引量:10
标识
DOI:10.1016/j.envres.2023.115549
摘要

With the prevalence of digitization, smart operation has become mainstream in future wastewater treatment plants. This requires substantial and complete historical data for model construction. However, the data collected from the front-end sensor contained numerous missing dissolved oxygen (DO) values. Therefore, this study proposed a framework that adaptively adjusted the structure of embedded filling models according to the missing situation. Long short-term memory and gated recurrent units (GRU) were embedded for experiments, and some standard filling methods were selected as benchmarks. The experimental dataset indicated that the K-nearest neighbor could achieve good filling results by traversing the parameters. The effect obtained by the method proposed in this study was slightly better, and GRU was better among the three embedded models. Analysis of the filling results for each DO column revealed that the effect was highly correlated with the dispersion of DO data. The experimental results for the entire dataset demonstrated that the filling effect of the proposed method was significantly better and more stable than the others. The proposed model suffered from the problem of insufficient interpretability and long training time. This study provides an efficient and practical method to solve the intricate missing DO and lays the foundation for the smart operation of wastewater treatment plants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd完成签到 ,获得积分10
刚刚
搜集达人应助欢欢采纳,获得10
刚刚
1秒前
慕青应助sun采纳,获得10
2秒前
CipherSage应助summermf采纳,获得10
2秒前
3秒前
大模型应助wangDx采纳,获得10
3秒前
王淳完成签到 ,获得积分10
4秒前
琪琪格完成签到,获得积分10
4秒前
小二郎应助万物可爱采纳,获得10
5秒前
7秒前
John完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
稳重的盼秋完成签到,获得积分10
8秒前
Ma完成签到,获得积分10
8秒前
勤恳思松发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
hfm发布了新的文献求助10
8秒前
青黛完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
跳跳糖完成签到 ,获得积分10
10秒前
10秒前
zz发布了新的文献求助10
10秒前
11秒前
yellow发布了新的文献求助10
12秒前
13秒前
Devin_Zhen发布了新的文献求助10
13秒前
Wy21完成签到 ,获得积分10
13秒前
李联洪发布了新的文献求助10
13秒前
黄蛋黄发布了新的文献求助20
14秒前
zzl发布了新的文献求助10
15秒前
15秒前
hydrogen完成签到,获得积分10
16秒前
笑笑笑发布了新的文献求助20
16秒前
16秒前
sun发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769694
求助须知:如何正确求助?哪些是违规求助? 5581034
关于积分的说明 15422447
捐赠科研通 4903349
什么是DOI,文献DOI怎么找? 2638182
邀请新用户注册赠送积分活动 1586070
关于科研通互助平台的介绍 1541180