亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An artificial neural network-based data filling approach for smart operation of digital wastewater treatment plants

缺少数据 计算机科学 数字化 可解释性 人工神经网络 数据挖掘 人工智能 机器学习 电信
作者
Yu Shen,Huimin Li,Bing Zhang,Yang Cao,Zhiwei Guo,Xu Gao,You‐Peng Chen
出处
期刊:Environmental Research [Elsevier BV]
卷期号:224: 115549-115549 被引量:10
标识
DOI:10.1016/j.envres.2023.115549
摘要

With the prevalence of digitization, smart operation has become mainstream in future wastewater treatment plants. This requires substantial and complete historical data for model construction. However, the data collected from the front-end sensor contained numerous missing dissolved oxygen (DO) values. Therefore, this study proposed a framework that adaptively adjusted the structure of embedded filling models according to the missing situation. Long short-term memory and gated recurrent units (GRU) were embedded for experiments, and some standard filling methods were selected as benchmarks. The experimental dataset indicated that the K-nearest neighbor could achieve good filling results by traversing the parameters. The effect obtained by the method proposed in this study was slightly better, and GRU was better among the three embedded models. Analysis of the filling results for each DO column revealed that the effect was highly correlated with the dispersion of DO data. The experimental results for the entire dataset demonstrated that the filling effect of the proposed method was significantly better and more stable than the others. The proposed model suffered from the problem of insufficient interpretability and long training time. This study provides an efficient and practical method to solve the intricate missing DO and lays the foundation for the smart operation of wastewater treatment plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wesz9887完成签到,获得积分10
15秒前
16秒前
gfbh完成签到,获得积分10
32秒前
笔墨留香完成签到,获得积分10
37秒前
Criminology34应助科研通管家采纳,获得10
38秒前
JamesPei应助科研通管家采纳,获得10
38秒前
NexusExplorer应助科研通管家采纳,获得30
38秒前
Criminology34应助科研通管家采纳,获得10
38秒前
Criminology34应助科研通管家采纳,获得10
38秒前
CipherSage应助科研通管家采纳,获得10
38秒前
xiaosun发布了新的文献求助10
42秒前
研友_yLpQrn完成签到,获得积分10
45秒前
花花菌完成签到,获得积分10
49秒前
51秒前
54秒前
55秒前
wanjingwan完成签到 ,获得积分10
58秒前
领导范儿应助happy贼王采纳,获得10
1分钟前
冷风完成签到 ,获得积分10
1分钟前
徐per爱豆完成签到 ,获得积分10
1分钟前
今后应助阡陌殇殇采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Orange应助happy贼王采纳,获得10
1分钟前
RR发布了新的文献求助10
1分钟前
HUOZHUANGCHAO完成签到,获得积分10
1分钟前
1分钟前
Achu发布了新的文献求助10
1分钟前
小葛完成签到,获得积分10
1分钟前
1分钟前
秋殇浅寞完成签到,获得积分10
1分钟前
秋殇浅寞发布了新的文献求助30
1分钟前
Owen应助月白lala采纳,获得10
1分钟前
FashionBoy应助Juniorrr采纳,获得20
1分钟前
1分钟前
拓跋半雪发布了新的文献求助30
1分钟前
happy贼王发布了新的文献求助10
1分钟前
lsl完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253622
求助须知:如何正确求助?哪些是违规求助? 4416941
关于积分的说明 13750721
捐赠科研通 4289366
什么是DOI,文献DOI怎么找? 2353439
邀请新用户注册赠送积分活动 1350176
关于科研通互助平台的介绍 1310096