清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An artificial neural network-based data filling approach for smart operation of digital wastewater treatment plants

缺少数据 计算机科学 数字化 可解释性 人工神经网络 数据挖掘 人工智能 机器学习 电信
作者
Yu Shen,Huimin Li,Bing Zhang,Yang Cao,Zhiwei Guo,Xu Gao,You‐Peng Chen
出处
期刊:Environmental Research [Elsevier]
卷期号:224: 115549-115549 被引量:10
标识
DOI:10.1016/j.envres.2023.115549
摘要

With the prevalence of digitization, smart operation has become mainstream in future wastewater treatment plants. This requires substantial and complete historical data for model construction. However, the data collected from the front-end sensor contained numerous missing dissolved oxygen (DO) values. Therefore, this study proposed a framework that adaptively adjusted the structure of embedded filling models according to the missing situation. Long short-term memory and gated recurrent units (GRU) were embedded for experiments, and some standard filling methods were selected as benchmarks. The experimental dataset indicated that the K-nearest neighbor could achieve good filling results by traversing the parameters. The effect obtained by the method proposed in this study was slightly better, and GRU was better among the three embedded models. Analysis of the filling results for each DO column revealed that the effect was highly correlated with the dispersion of DO data. The experimental results for the entire dataset demonstrated that the filling effect of the proposed method was significantly better and more stable than the others. The proposed model suffered from the problem of insufficient interpretability and long training time. This study provides an efficient and practical method to solve the intricate missing DO and lays the foundation for the smart operation of wastewater treatment plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助文艺猫咪采纳,获得10
31秒前
星辰大海应助xun采纳,获得10
50秒前
krajicek完成签到,获得积分10
57秒前
1分钟前
1分钟前
许子发布了新的文献求助10
1分钟前
文艺猫咪发布了新的文献求助10
1分钟前
jessicaw完成签到,获得积分10
1分钟前
1分钟前
Ji完成签到,获得积分10
1分钟前
白华苍松发布了新的文献求助10
1分钟前
gwbk完成签到,获得积分10
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
许子完成签到,获得积分10
1分钟前
今后应助Anto采纳,获得10
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
缥缈雍发布了新的文献求助20
2分钟前
清净163完成签到,获得积分10
3分钟前
3分钟前
3分钟前
陈纸溪发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
领导范儿应助残月初升采纳,获得10
4分钟前
晴天娃娃完成签到 ,获得积分10
4分钟前
4分钟前
残月初升发布了新的文献求助10
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
wanci应助陈纸溪采纳,获得10
4分钟前
5分钟前
5分钟前
白华苍松发布了新的文献求助10
5分钟前
陈纸溪发布了新的文献求助10
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131390
关于积分的说明 9391041
捐赠科研通 2831096
什么是DOI,文献DOI怎么找? 1556360
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715853