已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An artificial neural network-based data filling approach for smart operation of digital wastewater treatment plants

缺少数据 计算机科学 数字化 可解释性 人工神经网络 数据挖掘 人工智能 机器学习 电信
作者
Yu Shen,Huimin Li,Bing Zhang,Yang Cao,Zhiwei Guo,Xu Gao,You‐Peng Chen
出处
期刊:Environmental Research [Elsevier]
卷期号:224: 115549-115549 被引量:10
标识
DOI:10.1016/j.envres.2023.115549
摘要

With the prevalence of digitization, smart operation has become mainstream in future wastewater treatment plants. This requires substantial and complete historical data for model construction. However, the data collected from the front-end sensor contained numerous missing dissolved oxygen (DO) values. Therefore, this study proposed a framework that adaptively adjusted the structure of embedded filling models according to the missing situation. Long short-term memory and gated recurrent units (GRU) were embedded for experiments, and some standard filling methods were selected as benchmarks. The experimental dataset indicated that the K-nearest neighbor could achieve good filling results by traversing the parameters. The effect obtained by the method proposed in this study was slightly better, and GRU was better among the three embedded models. Analysis of the filling results for each DO column revealed that the effect was highly correlated with the dispersion of DO data. The experimental results for the entire dataset demonstrated that the filling effect of the proposed method was significantly better and more stable than the others. The proposed model suffered from the problem of insufficient interpretability and long training time. This study provides an efficient and practical method to solve the intricate missing DO and lays the foundation for the smart operation of wastewater treatment plants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗的尔风完成签到,获得积分10
4秒前
lc完成签到,获得积分20
4秒前
7秒前
对方正在输入...完成签到,获得积分10
7秒前
甘草三七完成签到,获得积分10
10秒前
11秒前
11秒前
Lee完成签到 ,获得积分10
11秒前
111发布了新的文献求助10
12秒前
好运完成签到 ,获得积分10
12秒前
科研通AI6.1应助王先生采纳,获得10
14秒前
DDL应助学术牛马采纳,获得10
14秒前
吕佳蔚完成签到 ,获得积分10
16秒前
清秀的金鱼应助wu采纳,获得10
17秒前
美满的雁桃完成签到 ,获得积分10
18秒前
20秒前
撒旦asd发布了新的文献求助10
21秒前
机智的嘻嘻完成签到 ,获得积分10
22秒前
23秒前
xch完成签到,获得积分10
23秒前
25秒前
lyncee完成签到,获得积分10
25秒前
Lucas应助发的不太好采纳,获得10
26秒前
nono完成签到 ,获得积分10
28秒前
梨凉完成签到,获得积分10
28秒前
yangy0519完成签到,获得积分20
28秒前
科研通AI6.1应助开心夏真采纳,获得10
29秒前
英俊的铭应助添添采纳,获得10
32秒前
35秒前
36秒前
汉堡包应助财荫夹印采纳,获得10
37秒前
科研通AI6.1应助Oscillator采纳,获得10
38秒前
妖妖灵1111完成签到 ,获得积分10
41秒前
yanni发布了新的文献求助30
42秒前
李健应助Cl采纳,获得10
42秒前
42秒前
寻道图强应助科研通管家采纳,获得50
43秒前
43秒前
科研之路完成签到,获得积分10
44秒前
脑洞疼应助科研通管家采纳,获得10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772121
求助须知:如何正确求助?哪些是违规求助? 5596217
关于积分的说明 15429142
捐赠科研通 4905232
什么是DOI,文献DOI怎么找? 2639279
邀请新用户注册赠送积分活动 1587204
关于科研通互助平台的介绍 1542058