An artificial neural network-based data filling approach for smart operation of digital wastewater treatment plants

缺少数据 计算机科学 数字化 可解释性 人工神经网络 数据挖掘 人工智能 机器学习 电信
作者
Yu Shen,Huimin Li,Bing Zhang,Yang Cao,Zhiwei Guo,Xu Gao,You‐Peng Chen
出处
期刊:Environmental Research [Elsevier]
卷期号:224: 115549-115549 被引量:10
标识
DOI:10.1016/j.envres.2023.115549
摘要

With the prevalence of digitization, smart operation has become mainstream in future wastewater treatment plants. This requires substantial and complete historical data for model construction. However, the data collected from the front-end sensor contained numerous missing dissolved oxygen (DO) values. Therefore, this study proposed a framework that adaptively adjusted the structure of embedded filling models according to the missing situation. Long short-term memory and gated recurrent units (GRU) were embedded for experiments, and some standard filling methods were selected as benchmarks. The experimental dataset indicated that the K-nearest neighbor could achieve good filling results by traversing the parameters. The effect obtained by the method proposed in this study was slightly better, and GRU was better among the three embedded models. Analysis of the filling results for each DO column revealed that the effect was highly correlated with the dispersion of DO data. The experimental results for the entire dataset demonstrated that the filling effect of the proposed method was significantly better and more stable than the others. The proposed model suffered from the problem of insufficient interpretability and long training time. This study provides an efficient and practical method to solve the intricate missing DO and lays the foundation for the smart operation of wastewater treatment plants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野友梅完成签到,获得积分10
刚刚
领导范儿应助朴实水壶采纳,获得10
2秒前
明理可燕发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
JnifferJun发布了新的文献求助10
5秒前
阿尔法突袭完成签到,获得积分10
7秒前
7秒前
神勇乐安完成签到,获得积分10
8秒前
Xiaoxiannv完成签到,获得积分10
9秒前
希望天下0贩的0应助znhy采纳,获得10
10秒前
11秒前
笨笨山芙应助super采纳,获得20
12秒前
幽壑之潜蛟应助crack采纳,获得10
12秒前
ZhonghanWen发布了新的文献求助20
12秒前
13秒前
花薇Liv完成签到,获得积分10
14秒前
朴实水壶发布了新的文献求助10
15秒前
swjfly完成签到,获得积分20
16秒前
JamesPei应助左惋庭采纳,获得10
17秒前
18秒前
19秒前
大模型应助Yi采纳,获得10
19秒前
19秒前
toolate完成签到,获得积分10
20秒前
克莱完成签到 ,获得积分10
22秒前
22秒前
彭于晏应助paddi采纳,获得10
23秒前
情怀应助ad采纳,获得10
24秒前
DQY发布了新的文献求助10
24秒前
24秒前
cc完成签到 ,获得积分10
25秒前
香蕉书兰发布了新的文献求助10
26秒前
小橘子完成签到 ,获得积分10
26秒前
26秒前
天天快乐应助CX330采纳,获得10
26秒前
FG发布了新的文献求助10
26秒前
小幸运发布了新的文献求助10
27秒前
慕长生完成签到,获得积分10
27秒前
bkagyin应助年华采纳,获得10
28秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743755
求助须知:如何正确求助?哪些是违规求助? 5415833
关于积分的说明 15348312
捐赠科研通 4884362
什么是DOI,文献DOI怎么找? 2625769
邀请新用户注册赠送积分活动 1574598
关于科研通互助平台的介绍 1531510