An artificial neural network-based data filling approach for smart operation of digital wastewater treatment plants

缺少数据 计算机科学 数字化 可解释性 人工神经网络 数据挖掘 人工智能 机器学习 电信
作者
Yu Shen,Huimin Li,Bing Zhang,Yang Cao,Zhiwei Guo,Xu Gao,You‐Peng Chen
出处
期刊:Environmental Research [Elsevier]
卷期号:224: 115549-115549 被引量:10
标识
DOI:10.1016/j.envres.2023.115549
摘要

With the prevalence of digitization, smart operation has become mainstream in future wastewater treatment plants. This requires substantial and complete historical data for model construction. However, the data collected from the front-end sensor contained numerous missing dissolved oxygen (DO) values. Therefore, this study proposed a framework that adaptively adjusted the structure of embedded filling models according to the missing situation. Long short-term memory and gated recurrent units (GRU) were embedded for experiments, and some standard filling methods were selected as benchmarks. The experimental dataset indicated that the K-nearest neighbor could achieve good filling results by traversing the parameters. The effect obtained by the method proposed in this study was slightly better, and GRU was better among the three embedded models. Analysis of the filling results for each DO column revealed that the effect was highly correlated with the dispersion of DO data. The experimental results for the entire dataset demonstrated that the filling effect of the proposed method was significantly better and more stable than the others. The proposed model suffered from the problem of insufficient interpretability and long training time. This study provides an efficient and practical method to solve the intricate missing DO and lays the foundation for the smart operation of wastewater treatment plants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xixicccccccc完成签到 ,获得积分10
1秒前
1秒前
hhy完成签到,获得积分10
2秒前
打打应助端庄的寄凡采纳,获得10
2秒前
冷酷紫蓝发布了新的文献求助10
2秒前
2秒前
2秒前
就好完成签到,获得积分10
3秒前
orixero应助冰冰大王采纳,获得10
3秒前
3秒前
hui发布了新的文献求助10
4秒前
Orange应助可耐的善斓采纳,获得10
4秒前
4秒前
情怀应助yuaasusanaann采纳,获得30
5秒前
明理吐司发布了新的文献求助10
6秒前
弹弹弹发布了新的文献求助10
6秒前
7秒前
YOU发布了新的文献求助10
7秒前
taikoyu完成签到 ,获得积分10
8秒前
wanci应助实验一定顺采纳,获得30
9秒前
zz完成签到,获得积分20
9秒前
李莹莹发布了新的文献求助10
9秒前
9秒前
123456发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
fan完成签到,获得积分10
11秒前
听雨完成签到 ,获得积分10
12秒前
12秒前
鱼大大发布了新的文献求助10
12秒前
Sober完成签到 ,获得积分10
12秒前
14秒前
14秒前
15秒前
失眠的血茗完成签到,获得积分10
16秒前
bai发布了新的文献求助10
16秒前
跳跳发布了新的文献求助20
16秒前
17秒前
17秒前
ling完成签到,获得积分20
18秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695131
求助须知:如何正确求助?哪些是违规求助? 5100385
关于积分的说明 15215391
捐赠科研通 4851561
什么是DOI,文献DOI怎么找? 2602454
邀请新用户注册赠送积分活动 1554227
关于科研通互助平台的介绍 1512186