A computational framework of routine test data for the cost-effective chronic disease prediction

医学 疾病 慢性病 结直肠癌 癌症 重症监护医学 内科学
作者
Mingzhu Liu,Jianzhong Zhou,Qilemuge Xi,Yuchao Liang,Haicheng Li,Pengfei Liang,Yuting Guo,Min Liu,Temuqile Temuqile,Lei Yang,Yongchun Zuo
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:13
标识
DOI:10.1093/bib/bbad054
摘要

Abstract Chronic diseases, because of insidious onset and long latent period, have become the major global disease burden. However, the current chronic disease diagnosis methods based on genetic markers or imaging analysis are challenging to promote completely due to high costs and cannot reach universality and popularization. This study analyzed massive data from routine blood and biochemical test of 32 448 patients and developed a novel framework for cost-effective chronic disease prediction with high accuracy (AUC 87.32%). Based on the best-performing XGBoost algorithm, 20 classification models were further constructed for 17 types of chronic diseases, including 9 types of cancers, 5 types of cardiovascular diseases and 3 types of mental illness. The highest accuracy of the model was 90.13% for cardia cancer, and the lowest was 76.38% for rectal cancer. The model interpretation with the SHAP algorithm showed that CREA, R-CV, GLU and NEUT% might be important indices to identify the most chronic diseases. PDW and R-CV are also discovered to be crucial indices in classifying the three types of chronic diseases (cardiovascular disease, cancer and mental illness). In addition, R-CV has a higher specificity for cancer, ALP for cardiovascular disease and GLU for mental illness. The association between chronic diseases was further revealed. At last, we build a user-friendly explainable machine-learning-based clinical decision support system (DisPioneer: http://bioinfor.imu.edu.cn/dispioneer) to assist in predicting, classifying and treating chronic diseases. This cost-effective work with simple blood tests will benefit more people and motivate clinical implementation and further investigation of chronic diseases prevention and surveillance program.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
2秒前
水水加油完成签到 ,获得积分10
2秒前
3秒前
4秒前
风中小夏发布了新的文献求助10
4秒前
外向薯片完成签到,获得积分10
5秒前
5秒前
5秒前
MZ发布了新的文献求助10
5秒前
Mole完成签到,获得积分10
5秒前
wnkwef完成签到,获得积分10
6秒前
yaoyaoei发布了新的文献求助10
8秒前
8秒前
HeAuBook应助wzx采纳,获得20
9秒前
ABC的风格发布了新的文献求助10
9秒前
tj发布了新的文献求助10
9秒前
风中小夏完成签到,获得积分10
10秒前
李思超发布了新的文献求助240
11秒前
陈y完成签到 ,获得积分10
12秒前
júpiter完成签到,获得积分10
13秒前
阿波卡利斯完成签到,获得积分10
13秒前
13秒前
Lucky完成签到 ,获得积分10
14秒前
HongY完成签到,获得积分10
15秒前
务实寄凡发布了新的文献求助10
16秒前
16秒前
陈y发布了新的文献求助10
16秒前
16秒前
lyoncr完成签到,获得积分10
17秒前
mao完成签到 ,获得积分10
17秒前
17秒前
Pu Chunyi完成签到,获得积分10
19秒前
啊啊啊完成签到,获得积分10
20秒前
21秒前
科研通AI5应助科研通管家采纳,获得30
21秒前
今后应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5035825
求助须知:如何正确求助?哪些是违规求助? 4268774
关于积分的说明 13308468
捐赠科研通 4079589
什么是DOI,文献DOI怎么找? 2231556
邀请新用户注册赠送积分活动 1239764
关于科研通互助平台的介绍 1165679