A computational framework of routine test data for the cost-effective chronic disease prediction

医学 疾病 慢性病 结直肠癌 癌症 重症监护医学 内科学
作者
Mingzhu Liu,Jian Zhong Zhou,Qilemuge Xi,Yuchao Liang,Haicheng Li,Pengfei Liang,Yuting Guo,Ming Liu,Temuqile Temuqile,Lei Yang,Yongchun Zuo
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:3
标识
DOI:10.1093/bib/bbad054
摘要

Chronic diseases, because of insidious onset and long latent period, have become the major global disease burden. However, the current chronic disease diagnosis methods based on genetic markers or imaging analysis are challenging to promote completely due to high costs and cannot reach universality and popularization. This study analyzed massive data from routine blood and biochemical test of 32 448 patients and developed a novel framework for cost-effective chronic disease prediction with high accuracy (AUC 87.32%). Based on the best-performing XGBoost algorithm, 20 classification models were further constructed for 17 types of chronic diseases, including 9 types of cancers, 5 types of cardiovascular diseases and 3 types of mental illness. The highest accuracy of the model was 90.13% for cardia cancer, and the lowest was 76.38% for rectal cancer. The model interpretation with the SHAP algorithm showed that CREA, R-CV, GLU and NEUT% might be important indices to identify the most chronic diseases. PDW and R-CV are also discovered to be crucial indices in classifying the three types of chronic diseases (cardiovascular disease, cancer and mental illness). In addition, R-CV has a higher specificity for cancer, ALP for cardiovascular disease and GLU for mental illness. The association between chronic diseases was further revealed. At last, we build a user-friendly explainable machine-learning-based clinical decision support system (DisPioneer: http://bioinfor.imu.edu.cn/dispioneer) to assist in predicting, classifying and treating chronic diseases. This cost-effective work with simple blood tests will benefit more people and motivate clinical implementation and further investigation of chronic diseases prevention and surveillance program.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
IDID发布了新的文献求助10
2秒前
汉堡包应助olivia采纳,获得10
2秒前
sean完成签到,获得积分10
2秒前
3秒前
3秒前
传奇3应助苹果不平采纳,获得10
4秒前
zhen发布了新的文献求助10
4秒前
mk发布了新的文献求助10
4秒前
无语大王完成签到,获得积分10
5秒前
ok完成签到,获得积分10
5秒前
6秒前
健壮发夹发布了新的文献求助10
7秒前
7秒前
微笑的人形立牌完成签到,获得积分10
8秒前
8秒前
我要吃饭发布了新的文献求助10
8秒前
9秒前
小柚子完成签到,获得积分10
10秒前
miller完成签到,获得积分10
10秒前
周久完成签到 ,获得积分10
10秒前
在水一方应助junyang采纳,获得10
11秒前
12秒前
olivia发布了新的文献求助10
12秒前
小柚子发布了新的文献求助10
12秒前
西柚完成签到,获得积分10
12秒前
13秒前
骆钧完成签到,获得积分10
13秒前
所所应助我要吃饭采纳,获得10
13秒前
kyt完成签到 ,获得积分10
13秒前
13秒前
搜集达人应助鼓励男孩采纳,获得10
14秒前
qyq完成签到,获得积分10
14秒前
吃不下完成签到,获得积分20
14秒前
小花小宝和阿飞完成签到 ,获得积分10
15秒前
林大胖子完成签到,获得积分10
15秒前
15秒前
追风少年应助枯藤老柳树采纳,获得10
15秒前
17秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162769
求助须知:如何正确求助?哪些是违规求助? 2813685
关于积分的说明 7901577
捐赠科研通 2473296
什么是DOI,文献DOI怎么找? 1316715
科研通“疑难数据库(出版商)”最低求助积分说明 631516
版权声明 602175