清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A computational framework of routine test data for the cost-effective chronic disease prediction

医学 疾病 慢性病 结直肠癌 癌症 重症监护医学 内科学
作者
Mingzhu Liu,Jianzhong Zhou,Qilemuge Xi,Yuchao Liang,Haicheng Li,Pengfei Liang,Yuting Guo,Min Liu,Temuqile Temuqile,Lei Yang,Yongchun Zuo
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:13
标识
DOI:10.1093/bib/bbad054
摘要

Abstract Chronic diseases, because of insidious onset and long latent period, have become the major global disease burden. However, the current chronic disease diagnosis methods based on genetic markers or imaging analysis are challenging to promote completely due to high costs and cannot reach universality and popularization. This study analyzed massive data from routine blood and biochemical test of 32 448 patients and developed a novel framework for cost-effective chronic disease prediction with high accuracy (AUC 87.32%). Based on the best-performing XGBoost algorithm, 20 classification models were further constructed for 17 types of chronic diseases, including 9 types of cancers, 5 types of cardiovascular diseases and 3 types of mental illness. The highest accuracy of the model was 90.13% for cardia cancer, and the lowest was 76.38% for rectal cancer. The model interpretation with the SHAP algorithm showed that CREA, R-CV, GLU and NEUT% might be important indices to identify the most chronic diseases. PDW and R-CV are also discovered to be crucial indices in classifying the three types of chronic diseases (cardiovascular disease, cancer and mental illness). In addition, R-CV has a higher specificity for cancer, ALP for cardiovascular disease and GLU for mental illness. The association between chronic diseases was further revealed. At last, we build a user-friendly explainable machine-learning-based clinical decision support system (DisPioneer: http://bioinfor.imu.edu.cn/dispioneer) to assist in predicting, classifying and treating chronic diseases. This cost-effective work with simple blood tests will benefit more people and motivate clinical implementation and further investigation of chronic diseases prevention and surveillance program.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
6秒前
望向天空的鱼完成签到 ,获得积分10
9秒前
啊哈哈哈发布了新的文献求助10
11秒前
12秒前
16秒前
30秒前
46秒前
小丸子完成签到 ,获得积分10
51秒前
啊哈哈哈完成签到,获得积分10
1分钟前
Liufgui应助乏味采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
新奇完成签到 ,获得积分10
1分钟前
1分钟前
香蕉觅云应助搞怪莫茗采纳,获得10
1分钟前
xz完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小蝴蝶发布了新的文献求助10
1分钟前
青出于蓝蔡完成签到,获得积分10
1分钟前
乏味发布了新的文献求助10
1分钟前
顾矜应助搞怪莫茗采纳,获得10
2分钟前
亭2007完成签到 ,获得积分10
2分钟前
2分钟前
FashionBoy应助小蝴蝶采纳,获得10
2分钟前
yshj完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
乏味发布了新的文献求助10
2分钟前
菠萝蜜完成签到 ,获得积分10
2分钟前
2分钟前
lb001完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
creep2020完成签到,获得积分10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
rockyshi完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015400
求助须知:如何正确求助?哪些是违规求助? 3555341
关于积分的说明 11317993
捐赠科研通 3288651
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812000