A Novel Deep Learning Approach to 5G CSI/Geomagnetism/VIO Fused Indoor Localization

计算机科学 里程计 保险丝(电气) 人工智能 扩展卡尔曼滤波器 计算机视觉 卡尔曼滤波器 实时计算 移动机器人 机器人 工程类 电气工程
作者
Chaoyong Yang,Zhenhao Cheng,Xiaoxue Jia,Letian Zhang,Linyang Li,Dongqing Zhao
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (3): 1311-1311 被引量:12
标识
DOI:10.3390/s23031311
摘要

For positioning tasks of mobile robots in indoor environments, the emerging positioning technique based on visual inertial odometry (VIO) is heavily influenced by light and suffers from cumulative errors, which cannot meet the requirements of long-term navigation and positioning. In contrast, positioning techniques that rely on indoor signal sources such as 5G and geomagnetism can provide drift-free global positioning results, but their overall positioning accuracy is low. In order to obtain higher precision and more reliable positioning, this paper proposes a fused 5G/geomagnetism/VIO indoor localization method. Firstly, the error back propagation neural network (BPNN) model is used to fuse 5G and geomagnetic signals to obtain more reliable global positioning results; secondly, the conversion relationship from VIO local positioning results to the global coordinate system is established through the least squares principle; and finally, a fused 5G/geomagnetism/VIO localization system based on the error state extended Kalman filter (ES-EKF) is constructed. The experimental results show that the 5G/geomagnetism fusion localization method overcomes the problem of low accuracy of single sensor localization and can provide more accurate global localization results. Additionally, after fusing the local and global positioning results, the average positioning error of the mobile robot in the two scenarios is 0.61 m and 0.72 m. Compared with the VINS-mono algorithm, our approach improves the average positioning accuracy in indoor environments by 69.0% and 67.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水杯完成签到,获得积分10
1秒前
1秒前
1秒前
罗伯特骚塞完成签到,获得积分10
2秒前
听话的靖柏完成签到 ,获得积分0
2秒前
美好雨竹完成签到 ,获得积分10
2秒前
Lucas应助聂立双采纳,获得10
2秒前
Damocles完成签到,获得积分10
3秒前
3秒前
4秒前
company发布了新的文献求助10
4秒前
moon完成签到,获得积分10
4秒前
博修完成签到,获得积分10
4秒前
弥生完成签到,获得积分10
4秒前
敏敏完成签到 ,获得积分10
5秒前
yuanquaner发布了新的文献求助10
5秒前
tcx完成签到 ,获得积分10
6秒前
张小兔啊完成签到,获得积分10
6秒前
小许会更好完成签到,获得积分10
7秒前
7秒前
CodeCraft应助cherish_7宝采纳,获得10
8秒前
8秒前
星迹一帆完成签到 ,获得积分10
9秒前
lhr发布了新的文献求助10
9秒前
彬彬应助xlj采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
Sunrise完成签到,获得积分10
10秒前
能干的吐司完成签到,获得积分10
10秒前
秦文完成签到 ,获得积分10
10秒前
科研通AI2S应助zoey采纳,获得10
10秒前
8R60d8应助七月流火采纳,获得10
10秒前
1234567890完成签到 ,获得积分10
11秒前
Jessica完成签到,获得积分10
11秒前
小梁完成签到,获得积分10
12秒前
顾矜应助xnzll采纳,获得10
12秒前
green完成签到,获得积分10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950265
求助须知:如何正确求助?哪些是违规求助? 3495724
关于积分的说明 11078490
捐赠科研通 3226143
什么是DOI,文献DOI怎么找? 1783626
邀请新用户注册赠送积分活动 867725
科研通“疑难数据库(出版商)”最低求助积分说明 800904