A Novel Deep Learning Approach to 5G CSI/Geomagnetism/VIO Fused Indoor Localization

计算机科学 里程计 保险丝(电气) 人工智能 扩展卡尔曼滤波器 计算机视觉 卡尔曼滤波器 实时计算 移动机器人 机器人 工程类 电气工程
作者
Chaoyong Yang,Zhenhao Cheng,Xiaoxue Jia,Letian Zhang,Linyang Li,Dongqing Zhao
出处
期刊:Sensors [MDPI AG]
卷期号:23 (3): 1311-1311 被引量:12
标识
DOI:10.3390/s23031311
摘要

For positioning tasks of mobile robots in indoor environments, the emerging positioning technique based on visual inertial odometry (VIO) is heavily influenced by light and suffers from cumulative errors, which cannot meet the requirements of long-term navigation and positioning. In contrast, positioning techniques that rely on indoor signal sources such as 5G and geomagnetism can provide drift-free global positioning results, but their overall positioning accuracy is low. In order to obtain higher precision and more reliable positioning, this paper proposes a fused 5G/geomagnetism/VIO indoor localization method. Firstly, the error back propagation neural network (BPNN) model is used to fuse 5G and geomagnetic signals to obtain more reliable global positioning results; secondly, the conversion relationship from VIO local positioning results to the global coordinate system is established through the least squares principle; and finally, a fused 5G/geomagnetism/VIO localization system based on the error state extended Kalman filter (ES-EKF) is constructed. The experimental results show that the 5G/geomagnetism fusion localization method overcomes the problem of low accuracy of single sensor localization and can provide more accurate global localization results. Additionally, after fusing the local and global positioning results, the average positioning error of the mobile robot in the two scenarios is 0.61 m and 0.72 m. Compared with the VINS-mono algorithm, our approach improves the average positioning accuracy in indoor environments by 69.0% and 67.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nozero完成签到,获得积分10
1秒前
澜生发布了新的文献求助10
2秒前
在水一方应助惠惠采纳,获得10
2秒前
852应助zZ采纳,获得10
2秒前
小马甲应助陌路采纳,获得10
3秒前
1335804518完成签到 ,获得积分10
4秒前
4秒前
甜甜醉波完成签到,获得积分10
4秒前
科研通AI2S应助卷卷王采纳,获得10
5秒前
可爱的函函应助梦里采纳,获得10
5秒前
沐晴完成签到,获得积分10
6秒前
入夏完成签到,获得积分10
6秒前
6秒前
6秒前
苏州小北发布了新的文献求助10
7秒前
7秒前
snail完成签到,获得积分10
8秒前
劈里啪啦完成签到,获得积分10
8秒前
wanci应助Jasmine采纳,获得10
9秒前
aoxiangcaizi12完成签到,获得积分10
9秒前
ding应助通~采纳,获得30
10秒前
11秒前
Annie发布了新的文献求助10
11秒前
晨曦完成签到,获得积分10
12秒前
十一发布了新的文献求助10
12秒前
顾矜应助Peter采纳,获得30
13秒前
Ayanami完成签到,获得积分10
13秒前
英俊的铭应助ysl采纳,获得30
13秒前
酷波er应助范范采纳,获得10
13秒前
14秒前
Akim应助damian采纳,获得30
14秒前
14秒前
16秒前
番茄炒西红柿完成签到,获得积分10
17秒前
无限安蕾完成签到,获得积分10
17秒前
17秒前
飘逸蘑菇发布了新的文献求助10
18秒前
混沌完成签到,获得积分10
18秒前
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794