已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning approach using 18F-FDG PET-based radiomics in differentiation of lung adenocarcinoma with bronchoalveolar distribution and infection

无线电技术 医学 肺癌 恶性肿瘤 标准摄取值 逻辑回归 腺癌 正电子发射断层摄影术 氟脱氧葡萄糖 核医学 放射科 人工智能 癌症 计算机科学 病理 内科学
作者
Nurşin Agüloğlu,Ayşegül Aksu,Damla S. Unat
出处
期刊:Nuclear Medicine Communications [Ovid Technologies (Wolters Kluwer)]
卷期号:44 (4): 302-308 被引量:3
标识
DOI:10.1097/mnm.0000000000001667
摘要

In this study, we aimed to evaluate the role of 18F-fluorodeoxyglucose PET/computerized tomography ( 18 F-FDG PET/CT)-based radiomic features in the differentiation of infection and malignancy in consolidating pulmonary lesions and to develop a prediction model based on radiomic features.The images of 106 patients who underwent 18 F-FDG PET/CT of consolidated lesions observed in the lung between January 2015 and July 2020 were evaluated using LIFEx software. The region of interest of the lung lesions was determined and volumetric and textural features were obtained. Clinical and radiomic data were evaluated with machine learning algorithms to build a model.There was a significant difference in all standardized uptake value (SUV) parameters and 26 texture features between the infection and cancer groups. The features with a correlation coefficient of less than 0.7 among the significant features were determined as SUV mean , GLZLM_SZE, GLZLM_LZE, GLZLM_SZLGE and GLZLM_ZLNU. These five features were analyzed in the Waikato Environment for Knowledge Analysis program to create a model that could distinguish infection and cancer groups, and the model performance was found to be the highest with logistic regression (area under curve, 0.813; accuracy, 75.7%). The sensitivity and specificity values of the model in distinguishing cancer patients were calculated as 80.6 and 70.6%, respectively.In our study, we created prediction models based on radiomic analysis of 18 F-FDG PET/CT images. Texture analysis with machine learning algorithms is a noninvasive method that can be useful in the differentiation of infection and malignancy in consolidating lung lesions in the clinical setting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
第九个现代化完成签到 ,获得积分10
1秒前
mgqqlwq完成签到,获得积分10
1秒前
3秒前
3秒前
CipherSage应助李华采纳,获得10
4秒前
小蘑菇应助不理我采纳,获得10
4秒前
cctv18应助完美的海秋采纳,获得10
4秒前
刘笨笨发布了新的文献求助10
10秒前
gaw2008完成签到,获得积分10
10秒前
清脆的白开水完成签到,获得积分10
12秒前
12秒前
小蘑菇应助zcqian采纳,获得10
12秒前
健忘沛文发布了新的文献求助20
13秒前
13秒前
Sheldon完成签到,获得积分10
14秒前
15秒前
慕青应助jvbjg采纳,获得20
16秒前
gower1003发布了新的文献求助10
17秒前
centlay发布了新的文献求助10
17秒前
李华发布了新的文献求助10
19秒前
慕青应助重要冲采纳,获得10
21秒前
cctv18应助完美的海秋采纳,获得10
21秒前
刘笨笨完成签到,获得积分10
22秒前
lulu完成签到 ,获得积分10
22秒前
CNSer完成签到,获得积分10
22秒前
科目三应助执着的怜珊采纳,获得10
24秒前
26秒前
粗犷的半邪完成签到 ,获得积分10
31秒前
gower1003完成签到,获得积分10
31秒前
wssamuel完成签到 ,获得积分10
32秒前
33秒前
38秒前
DE2022发布了新的文献求助10
38秒前
39秒前
凌寒233完成签到 ,获得积分10
44秒前
47秒前
49秒前
49秒前
49秒前
聪明梦容发布了新的文献求助10
53秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244538
求助须知:如何正确求助?哪些是违规求助? 2888246
关于积分的说明 8251936
捐赠科研通 2556656
什么是DOI,文献DOI怎么找? 1385110
科研通“疑难数据库(出版商)”最低求助积分说明 650025
邀请新用户注册赠送积分活动 626177