Genotype recommendations for high performance and stability based on multiple traits selection across a multi-environment in rapeseed

特质 最佳线性无偏预测 油菜籽 选择(遗传算法) 阿米 理论(学习稳定性) 基因-环境相互作用 生物技术 基因型 生物 统计 农学 数学 计算机科学 遗传学 机器学习 基因 程序设计语言
作者
Zhaojie Li,Wei Wu
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:145: 126787-126787 被引量:5
标识
DOI:10.1016/j.eja.2023.126787
摘要

Breeding programs for rapeseed genotypes with high yield potential and other critically targeted parameters such as high oil content and lodging resistance are important strategies for sustainable rapeseed (Brassica napus) production. However, the selection and recommendation of ideal genotypes with high performance and stability across multiple environments based on multiple traits has always been a difficult task. In this regard, two popular methods–additive main effect and multiplicative interaction (AMMI) and best linear unbiased prediction (BLUP), were adopted for analyzing the genotype × environment interaction. A superiority index (WAASBY) was introduced to integrate the mean performance and stability of the single traits. A multi–trait stability index (MTSI) was applied for genotype recommendation in combination with high performance and stability, based on multiple traits across five site–year environments. In the present multi–environment trials, the dataset (involving 41 recorded parameters assessed in 23 genotypes) was used to illustrate the application of genotype recommendations. The results showed that the reliability of the BLUP model for selecting a single parameter was assured because of the high genotypic accuracy of selection (ranging from 0.81 to 0.97). Genotype recommendations for mean performance and stability based on a single trait are partial and prejudiced, whereas selection based on multiple traits is desirable. The feasibility of MTSI application for genotype recommendations considering multiple traits was further evidenced by multiple analytical and statistical approaches. The MTSI always showed a significant and consistent relationship with WAASBY for all targeted parameters, i.e., seed yield, oil content and lodging resistance (R2 =0.26*–0.80**). Three ideal genotypes (Huayouza 50, Qingyou 3 and Zheyou 51) were selected in consideration of both the mean performance and stability of three targeted parameter, as represented by lower MTSI (1.60–1.69). This study implies that MTSI is an accurate, robust, and easy–to–handle indicator for breeders and agronomists who desire simultaneous genotype selection based on multiple traits to achieve high mean performance and stability across multiple environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JUN完成签到,获得积分10
1秒前
shacodow完成签到,获得积分10
2秒前
ll完成签到,获得积分10
4秒前
瞿人雄完成签到,获得积分10
5秒前
龙弟弟完成签到 ,获得积分10
6秒前
没心没肺完成签到,获得积分10
7秒前
学术霸王完成签到,获得积分10
8秒前
1002SHIB完成签到,获得积分10
9秒前
nihaolaojiu完成签到,获得积分10
9秒前
sheetung完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
34秒前
路漫漫其修远兮完成签到 ,获得积分10
35秒前
月下荷花完成签到 ,获得积分10
35秒前
小山己几完成签到,获得积分10
41秒前
李音完成签到 ,获得积分10
48秒前
七厘米发布了新的文献求助10
48秒前
哥哥发布了新的文献求助10
54秒前
周周南完成签到 ,获得积分10
1分钟前
1分钟前
Brenda完成签到,获得积分10
1分钟前
光亮若翠完成签到,获得积分10
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
颜小喵完成签到 ,获得积分10
1分钟前
悦耳的城完成签到 ,获得积分10
1分钟前
七厘米完成签到,获得积分10
1分钟前
单纯无声完成签到 ,获得积分10
1分钟前
平凡世界完成签到 ,获得积分10
1分钟前
Neko完成签到,获得积分10
1分钟前
fbwg完成签到,获得积分10
1分钟前
Johan完成签到 ,获得积分10
1分钟前
松柏完成签到 ,获得积分10
1分钟前
Song完成签到 ,获得积分10
1分钟前
孙朱珠完成签到,获得积分10
1分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
feiyang完成签到 ,获得积分10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
研友_VZG7GZ应助www采纳,获得10
2分钟前
HY完成签到 ,获得积分10
2分钟前
huluwa完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715346
求助须知:如何正确求助?哪些是违规求助? 5233652
关于积分的说明 15274288
捐赠科研通 4866240
什么是DOI,文献DOI怎么找? 2612837
邀请新用户注册赠送积分活动 1562989
关于科研通互助平台的介绍 1520370