Genotype recommendations for high performance and stability based on multiple traits selection across a multi-environment in rapeseed

特质 最佳线性无偏预测 油菜籽 选择(遗传算法) 阿米 理论(学习稳定性) 基因-环境相互作用 生物技术 基因型 生物 统计 农学 数学 计算机科学 遗传学 机器学习 基因 程序设计语言
作者
Zhaojie Li,Wei Wu
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:145: 126787-126787 被引量:5
标识
DOI:10.1016/j.eja.2023.126787
摘要

Breeding programs for rapeseed genotypes with high yield potential and other critically targeted parameters such as high oil content and lodging resistance are important strategies for sustainable rapeseed (Brassica napus) production. However, the selection and recommendation of ideal genotypes with high performance and stability across multiple environments based on multiple traits has always been a difficult task. In this regard, two popular methods–additive main effect and multiplicative interaction (AMMI) and best linear unbiased prediction (BLUP), were adopted for analyzing the genotype × environment interaction. A superiority index (WAASBY) was introduced to integrate the mean performance and stability of the single traits. A multi–trait stability index (MTSI) was applied for genotype recommendation in combination with high performance and stability, based on multiple traits across five site–year environments. In the present multi–environment trials, the dataset (involving 41 recorded parameters assessed in 23 genotypes) was used to illustrate the application of genotype recommendations. The results showed that the reliability of the BLUP model for selecting a single parameter was assured because of the high genotypic accuracy of selection (ranging from 0.81 to 0.97). Genotype recommendations for mean performance and stability based on a single trait are partial and prejudiced, whereas selection based on multiple traits is desirable. The feasibility of MTSI application for genotype recommendations considering multiple traits was further evidenced by multiple analytical and statistical approaches. The MTSI always showed a significant and consistent relationship with WAASBY for all targeted parameters, i.e., seed yield, oil content and lodging resistance (R2 =0.26*–0.80**). Three ideal genotypes (Huayouza 50, Qingyou 3 and Zheyou 51) were selected in consideration of both the mean performance and stability of three targeted parameter, as represented by lower MTSI (1.60–1.69). This study implies that MTSI is an accurate, robust, and easy–to–handle indicator for breeders and agronomists who desire simultaneous genotype selection based on multiple traits to achieve high mean performance and stability across multiple environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚定寒松完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
1111完成签到 ,获得积分10
9秒前
秋秋完成签到,获得积分10
10秒前
青青完成签到 ,获得积分10
10秒前
完美世界应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
Jasper应助慕容飞凤采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
顾城浪子完成签到,获得积分10
16秒前
有魅力胡萝卜完成签到,获得积分10
17秒前
七QI完成签到 ,获得积分10
18秒前
LIUJIE完成签到,获得积分10
19秒前
576-576完成签到 ,获得积分10
19秒前
smh完成签到 ,获得积分10
21秒前
李健应助有魅力胡萝卜采纳,获得10
21秒前
小武完成签到,获得积分10
21秒前
聂先生完成签到,获得积分10
25秒前
影像大侠完成签到,获得积分10
27秒前
xyzlancet完成签到,获得积分10
28秒前
MM完成签到 ,获得积分10
29秒前
唐唐完成签到,获得积分10
30秒前
WXyue完成签到 ,获得积分10
30秒前
耕牛热完成签到,获得积分10
31秒前
望凌烟完成签到,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
jiaojaioo完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
37秒前
端庄的凌旋完成签到,获得积分10
40秒前
嗯嗯完成签到 ,获得积分10
41秒前
Diane完成签到,获得积分10
43秒前
47秒前
fuluyuzhe_668完成签到,获得积分10
48秒前
彭于晏应助petrichor采纳,获得10
48秒前
量子星尘发布了新的文献求助10
54秒前
缥缈的闭月完成签到,获得积分10
55秒前
ghdrghh完成签到,获得积分10
55秒前
zhangnan完成签到 ,获得积分10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858