Genotype recommendations for high performance and stability based on multiple traits selection across a multi-environment in rapeseed

特质 最佳线性无偏预测 油菜籽 选择(遗传算法) 阿米 理论(学习稳定性) 基因-环境相互作用 生物技术 基因型 生物 统计 农学 数学 计算机科学 遗传学 机器学习 基因 程序设计语言
作者
Zhaojie Li,Wei Wu
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:145: 126787-126787 被引量:5
标识
DOI:10.1016/j.eja.2023.126787
摘要

Breeding programs for rapeseed genotypes with high yield potential and other critically targeted parameters such as high oil content and lodging resistance are important strategies for sustainable rapeseed (Brassica napus) production. However, the selection and recommendation of ideal genotypes with high performance and stability across multiple environments based on multiple traits has always been a difficult task. In this regard, two popular methods–additive main effect and multiplicative interaction (AMMI) and best linear unbiased prediction (BLUP), were adopted for analyzing the genotype × environment interaction. A superiority index (WAASBY) was introduced to integrate the mean performance and stability of the single traits. A multi–trait stability index (MTSI) was applied for genotype recommendation in combination with high performance and stability, based on multiple traits across five site–year environments. In the present multi–environment trials, the dataset (involving 41 recorded parameters assessed in 23 genotypes) was used to illustrate the application of genotype recommendations. The results showed that the reliability of the BLUP model for selecting a single parameter was assured because of the high genotypic accuracy of selection (ranging from 0.81 to 0.97). Genotype recommendations for mean performance and stability based on a single trait are partial and prejudiced, whereas selection based on multiple traits is desirable. The feasibility of MTSI application for genotype recommendations considering multiple traits was further evidenced by multiple analytical and statistical approaches. The MTSI always showed a significant and consistent relationship with WAASBY for all targeted parameters, i.e., seed yield, oil content and lodging resistance (R2 =0.26*–0.80**). Three ideal genotypes (Huayouza 50, Qingyou 3 and Zheyou 51) were selected in consideration of both the mean performance and stability of three targeted parameter, as represented by lower MTSI (1.60–1.69). This study implies that MTSI is an accurate, robust, and easy–to–handle indicator for breeders and agronomists who desire simultaneous genotype selection based on multiple traits to achieve high mean performance and stability across multiple environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Moyanmisheng发布了新的文献求助10
刚刚
Darry发布了新的文献求助10
1秒前
深情安青应助leo采纳,获得10
1秒前
adoretheall发布了新的文献求助20
1秒前
旭旭发布了新的文献求助10
1秒前
1秒前
个性梦蕊完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
Jeffreyzhong完成签到,获得积分10
1秒前
lune发布了新的文献求助10
2秒前
2秒前
豆包发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
仰望星空完成签到,获得积分10
3秒前
繁荣的醉山完成签到 ,获得积分10
4秒前
上官若男应助malan采纳,获得10
4秒前
Michael_li发布了新的文献求助10
4秒前
tgb123发布了新的文献求助10
4秒前
欣忆完成签到 ,获得积分10
5秒前
无极微光应助MM采纳,获得20
5秒前
千葉发布了新的文献求助10
6秒前
Jasper应助hefan采纳,获得10
6秒前
应见惯完成签到 ,获得积分10
6秒前
6秒前
研友_Lw7MKL发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
fuHM完成签到,获得积分10
7秒前
7秒前
wyz发布了新的文献求助10
7秒前
ooooodai发布了新的文献求助10
8秒前
8秒前
may0506发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661525
求助须知:如何正确求助?哪些是违规求助? 4838950
关于积分的说明 15096313
捐赠科研通 4820245
什么是DOI,文献DOI怎么找? 2579795
邀请新用户注册赠送积分活动 1534060
关于科研通互助平台的介绍 1492773