Genotype recommendations for high performance and stability based on multiple traits selection across a multi-environment in rapeseed

特质 最佳线性无偏预测 油菜籽 选择(遗传算法) 阿米 理论(学习稳定性) 基因-环境相互作用 生物技术 基因型 生物 统计 农学 数学 计算机科学 遗传学 机器学习 基因 程序设计语言
作者
Zhaojie Li,Wei Wu
出处
期刊:European Journal of Agronomy [Elsevier]
卷期号:145: 126787-126787 被引量:5
标识
DOI:10.1016/j.eja.2023.126787
摘要

Breeding programs for rapeseed genotypes with high yield potential and other critically targeted parameters such as high oil content and lodging resistance are important strategies for sustainable rapeseed (Brassica napus) production. However, the selection and recommendation of ideal genotypes with high performance and stability across multiple environments based on multiple traits has always been a difficult task. In this regard, two popular methods–additive main effect and multiplicative interaction (AMMI) and best linear unbiased prediction (BLUP), were adopted for analyzing the genotype × environment interaction. A superiority index (WAASBY) was introduced to integrate the mean performance and stability of the single traits. A multi–trait stability index (MTSI) was applied for genotype recommendation in combination with high performance and stability, based on multiple traits across five site–year environments. In the present multi–environment trials, the dataset (involving 41 recorded parameters assessed in 23 genotypes) was used to illustrate the application of genotype recommendations. The results showed that the reliability of the BLUP model for selecting a single parameter was assured because of the high genotypic accuracy of selection (ranging from 0.81 to 0.97). Genotype recommendations for mean performance and stability based on a single trait are partial and prejudiced, whereas selection based on multiple traits is desirable. The feasibility of MTSI application for genotype recommendations considering multiple traits was further evidenced by multiple analytical and statistical approaches. The MTSI always showed a significant and consistent relationship with WAASBY for all targeted parameters, i.e., seed yield, oil content and lodging resistance (R2 =0.26*–0.80**). Three ideal genotypes (Huayouza 50, Qingyou 3 and Zheyou 51) were selected in consideration of both the mean performance and stability of three targeted parameter, as represented by lower MTSI (1.60–1.69). This study implies that MTSI is an accurate, robust, and easy–to–handle indicator for breeders and agronomists who desire simultaneous genotype selection based on multiple traits to achieve high mean performance and stability across multiple environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小蘑菇应助鱼跃采纳,获得10
1秒前
Hello应助mobai采纳,获得10
1秒前
今后应助zyboat采纳,获得10
3秒前
亲亲发布了新的文献求助30
3秒前
bkagyin应助热情的乐荷采纳,获得10
4秒前
4秒前
5秒前
bicargo发布了新的文献求助10
5秒前
5秒前
5秒前
heisebeileimao应助zanyunying采纳,获得30
6秒前
量子星尘发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
shuai发布了新的文献求助60
7秒前
8秒前
linzg发布了新的文献求助10
8秒前
8秒前
8秒前
Akim应助虚幻的小海豚采纳,获得10
8秒前
1101001发布了新的文献求助50
8秒前
Angora发布了新的文献求助10
9秒前
9秒前
9秒前
搜集达人应助JJMM采纳,获得10
10秒前
潘升国发布了新的文献求助10
10秒前
Yannis发布了新的文献求助10
10秒前
10秒前
期辰完成签到,获得积分10
10秒前
11秒前
zyj完成签到,获得积分10
12秒前
pluto应助佳佳528采纳,获得10
13秒前
1234发布了新的文献求助10
13秒前
852应助明亮冰颜采纳,获得10
15秒前
研友_VZG7GZ应助期辰采纳,获得10
15秒前
DQ发布了新的文献求助10
15秒前
Ray羽曦~发布了新的文献求助10
16秒前
蒸盐粥发布了新的文献求助10
16秒前
bicargo完成签到,获得积分20
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535