已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrated multi-dimensional deep neural network model improves prognosis prediction of advanced NSCLC patients receiving bevacizumab

贝伐单抗 医学 肿瘤科 内科学 队列 比例危险模型 危险系数 肺癌 化疗 置信区间
作者
Butuo Li,Linlin Yang,Chao Jiang,Yueyuan Yao,Haoqian Li,Shuping Cheng,Bing Zou,Bingjie Fan,Linlin Wang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13 被引量:3
标识
DOI:10.3389/fonc.2023.1052147
摘要

The addition of bevacizumab was found to be associated with prolonged survival whether in combination with chemotherapy, tyrosine kinase inhibitors or immune checkpoint inhibitors in the treatment landscape of advanced non-small cell lung cancer (NSCLC) patients. However, the biomarkers for efficacy of bevacizumab were still largely unknown. This study aimed to develop a deep learning model to provide individual assessment of survival in advanced NSCLC patients receiving bevacizumab.All data were retrospectively collected from a cohort of 272 radiological and pathological proven advanced non-squamous NSCLC patients. A novel multi-dimensional deep neural network (DNN) models were trained based on clinicopathological, inflammatory and radiomics features using DeepSurv and N-MTLR algorithm. And concordance index (C-index) and bier score was used to demonstrate the discriminatory and predictive capacity of the model.The integration of clinicopathologic, inflammatory and radiomics features representation was performed using DeepSurv and N-MTLR with the C-index of 0.712 and 0.701 in testing cohort. And Cox proportional hazard (CPH) and random survival forest (RSF) models were also developed after data pre-processing and feature selection with the C-index of 0.665 and 0.679 respectively. DeepSurv prognostic model, indicated with best performance, was used for individual prognosis prediction. And patients divided in high-risk group were significantly associated with inferior PFS (median PFS: 5.4 vs 13.1 months, P<0.0001) and OS (median OS: 16.4 vs 21.3 months, P<0.0001).The integration of clinicopathologic, inflammatory and radiomics features representation based on DeepSurv model exhibited superior predictive accuracy as non-invasive method to assist in patients counseling and guidance of optimal treatment strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Novice6354完成签到 ,获得积分10
刚刚
桐桐应助shuiyi采纳,获得10
刚刚
务实的远航完成签到 ,获得积分10
3秒前
博弈完成签到 ,获得积分10
5秒前
6秒前
去码头整点薯条完成签到 ,获得积分10
7秒前
喜欢写文章的小朱完成签到,获得积分10
9秒前
10秒前
西西发布了新的文献求助10
12秒前
Mimi完成签到 ,获得积分10
12秒前
15秒前
16秒前
满意妙梦发布了新的文献求助10
17秒前
19秒前
肖浩翔发布了新的文献求助10
20秒前
爆米花应助hl采纳,获得10
21秒前
24秒前
知名不具完成签到 ,获得积分10
25秒前
alex发布了新的文献求助10
26秒前
26秒前
俊逸沛菡完成签到 ,获得积分10
26秒前
想退休的快乐土豆泥完成签到,获得积分10
27秒前
复杂怜容完成签到,获得积分10
29秒前
小袁完成签到 ,获得积分10
29秒前
shuiyi发布了新的文献求助10
30秒前
32秒前
复杂怜容发布了新的文献求助10
36秒前
36秒前
尹大大完成签到,获得积分10
40秒前
41秒前
orange03关注了科研通微信公众号
42秒前
尹大大发布了新的文献求助10
43秒前
45秒前
hl发布了新的文献求助10
45秒前
47秒前
47秒前
47秒前
慧休休完成签到,获得积分10
48秒前
LiLi完成签到 ,获得积分10
49秒前
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599628
求助须知:如何正确求助?哪些是违规求助? 4685351
关于积分的说明 14838385
捐赠科研通 4669488
什么是DOI,文献DOI怎么找? 2538128
邀请新用户注册赠送积分活动 1505503
关于科研通互助平台的介绍 1470898