已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrated multi-dimensional deep neural network model improves prognosis prediction of advanced NSCLC patients receiving bevacizumab

贝伐单抗 医学 肿瘤科 内科学 队列 比例危险模型 危险系数 肺癌 化疗 置信区间
作者
Butuo Li,Linlin Yang,Chao Jiang,Yueyuan Yao,Haoqian Li,Shuping Cheng,Bing Zou,Bingjie Fan,Linlin Wang
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:13 被引量:3
标识
DOI:10.3389/fonc.2023.1052147
摘要

The addition of bevacizumab was found to be associated with prolonged survival whether in combination with chemotherapy, tyrosine kinase inhibitors or immune checkpoint inhibitors in the treatment landscape of advanced non-small cell lung cancer (NSCLC) patients. However, the biomarkers for efficacy of bevacizumab were still largely unknown. This study aimed to develop a deep learning model to provide individual assessment of survival in advanced NSCLC patients receiving bevacizumab.All data were retrospectively collected from a cohort of 272 radiological and pathological proven advanced non-squamous NSCLC patients. A novel multi-dimensional deep neural network (DNN) models were trained based on clinicopathological, inflammatory and radiomics features using DeepSurv and N-MTLR algorithm. And concordance index (C-index) and bier score was used to demonstrate the discriminatory and predictive capacity of the model.The integration of clinicopathologic, inflammatory and radiomics features representation was performed using DeepSurv and N-MTLR with the C-index of 0.712 and 0.701 in testing cohort. And Cox proportional hazard (CPH) and random survival forest (RSF) models were also developed after data pre-processing and feature selection with the C-index of 0.665 and 0.679 respectively. DeepSurv prognostic model, indicated with best performance, was used for individual prognosis prediction. And patients divided in high-risk group were significantly associated with inferior PFS (median PFS: 5.4 vs 13.1 months, P<0.0001) and OS (median OS: 16.4 vs 21.3 months, P<0.0001).The integration of clinicopathologic, inflammatory and radiomics features representation based on DeepSurv model exhibited superior predictive accuracy as non-invasive method to assist in patients counseling and guidance of optimal treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
源远流长完成签到,获得积分10
刚刚
所所应助刘斌采纳,获得10
2秒前
7秒前
岁岁完成签到 ,获得积分10
8秒前
9秒前
Niko完成签到,获得积分10
12秒前
L_MD完成签到,获得积分10
13秒前
Niko发布了新的文献求助10
15秒前
111222发布了新的文献求助10
15秒前
yangon完成签到,获得积分20
15秒前
dingjianqiang发布了新的文献求助20
20秒前
21秒前
yangon发布了新的文献求助10
21秒前
七草肃完成签到,获得积分10
21秒前
啊啊啊啊啊啊啊完成签到,获得积分10
22秒前
26秒前
elisa828完成签到,获得积分10
27秒前
从容一顾完成签到 ,获得积分10
29秒前
橙子完成签到 ,获得积分10
32秒前
33秒前
JY完成签到 ,获得积分10
37秒前
清清佑佑发布了新的文献求助10
38秒前
38秒前
柳致远发布了新的文献求助10
39秒前
人间烟火完成签到,获得积分20
40秒前
小冯完成签到 ,获得积分10
42秒前
李昕123完成签到 ,获得积分10
45秒前
kento完成签到,获得积分0
46秒前
难得麻瓜完成签到,获得积分10
47秒前
怕黑行恶完成签到,获得积分10
50秒前
51秒前
53秒前
Lucas应助信江书院采纳,获得10
54秒前
xona完成签到,获得积分10
56秒前
56秒前
跳跃雨文完成签到,获得积分10
57秒前
刘斌发布了新的文献求助10
58秒前
一一完成签到 ,获得积分10
1分钟前
ChouNic完成签到 ,获得积分10
1分钟前
领导范儿应助菩提本无树采纳,获得10
1分钟前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219617
求助须知:如何正确求助?哪些是违规求助? 2868402
关于积分的说明 8160932
捐赠科研通 2535466
什么是DOI,文献DOI怎么找? 1367931
科研通“疑难数据库(出版商)”最低求助积分说明 645118
邀请新用户注册赠送积分活动 618457