Integrated multi-dimensional deep neural network model improves prognosis prediction of advanced NSCLC patients receiving bevacizumab

贝伐单抗 医学 肿瘤科 内科学 队列 比例危险模型 危险系数 肺癌 化疗 置信区间
作者
Butuo Li,Linlin Yang,Chao Jiang,Yueyuan Yao,Haoqian Li,Shuping Cheng,Bing Zou,Bingjie Fan,Linlin Wang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:13 被引量:3
标识
DOI:10.3389/fonc.2023.1052147
摘要

The addition of bevacizumab was found to be associated with prolonged survival whether in combination with chemotherapy, tyrosine kinase inhibitors or immune checkpoint inhibitors in the treatment landscape of advanced non-small cell lung cancer (NSCLC) patients. However, the biomarkers for efficacy of bevacizumab were still largely unknown. This study aimed to develop a deep learning model to provide individual assessment of survival in advanced NSCLC patients receiving bevacizumab.All data were retrospectively collected from a cohort of 272 radiological and pathological proven advanced non-squamous NSCLC patients. A novel multi-dimensional deep neural network (DNN) models were trained based on clinicopathological, inflammatory and radiomics features using DeepSurv and N-MTLR algorithm. And concordance index (C-index) and bier score was used to demonstrate the discriminatory and predictive capacity of the model.The integration of clinicopathologic, inflammatory and radiomics features representation was performed using DeepSurv and N-MTLR with the C-index of 0.712 and 0.701 in testing cohort. And Cox proportional hazard (CPH) and random survival forest (RSF) models were also developed after data pre-processing and feature selection with the C-index of 0.665 and 0.679 respectively. DeepSurv prognostic model, indicated with best performance, was used for individual prognosis prediction. And patients divided in high-risk group were significantly associated with inferior PFS (median PFS: 5.4 vs 13.1 months, P<0.0001) and OS (median OS: 16.4 vs 21.3 months, P<0.0001).The integration of clinicopathologic, inflammatory and radiomics features representation based on DeepSurv model exhibited superior predictive accuracy as non-invasive method to assist in patients counseling and guidance of optimal treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心的饼干完成签到,获得积分10
1秒前
1秒前
微末完成签到,获得积分10
1秒前
关琦完成签到,获得积分10
2秒前
xyg完成签到,获得积分10
2秒前
Joyj99发布了新的文献求助10
3秒前
3秒前
Good_小鬼完成签到,获得积分10
4秒前
4秒前
沐允贤发布了新的文献求助10
5秒前
David完成签到 ,获得积分10
5秒前
5秒前
铁铁发布了新的文献求助10
5秒前
阿兰完成签到 ,获得积分10
6秒前
Doubility完成签到,获得积分10
6秒前
善良水壶完成签到,获得积分10
6秒前
7秒前
香蕉觅云应助12345采纳,获得10
7秒前
慕青应助佑予和安采纳,获得10
7秒前
9秒前
10秒前
xyg发布了新的文献求助10
10秒前
11秒前
尔尔完成签到,获得积分10
12秒前
DragonT发布了新的文献求助30
13秒前
bigheadear完成签到,获得积分10
13秒前
小肚肚发布了新的文献求助10
14秒前
15秒前
肖文泽完成签到,获得积分20
15秒前
15秒前
彭于晏应助科研通管家采纳,获得20
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
梧桐应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
雪白的冥幽完成签到,获得积分10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
ED应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4023566
求助须知:如何正确求助?哪些是违规求助? 3563544
关于积分的说明 11343185
捐赠科研通 3294981
什么是DOI,文献DOI怎么找? 1814896
邀请新用户注册赠送积分活动 889576
科研通“疑难数据库(出版商)”最低求助积分说明 813019