DM-Fusion: Deep Model-Driven Network for Heterogeneous Image Fusion

可解释性 计算机科学 深度学习 人工智能 判别式 网络体系结构 卷积神经网络 人工神经网络 特征(语言学) 机器学习 模式识别(心理学) 哲学 语言学 计算机安全
作者
Guoxia Xu,Chunming He,Hao Wang,Hu Zhu,Weiping Ding
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:13
标识
DOI:10.1109/tnnls.2023.3238511
摘要

Heterogeneous image fusion (HIF) is an enhancement technique for highlighting the discriminative information and textural detail from heterogeneous source images. Although various deep neural network-based HIF methods have been proposed, the most widely used single data-driven manner of the convolutional neural network always fails to give a guaranteed theoretical architecture and optimal convergence for the HIF problem. In this article, a deep model-driven neural network is designed for this HIF problem, which adaptively integrates the merits of model-based techniques for interpretability and deep learning-based methods for generalizability. Unlike the general network architecture as a black box, the proposed objective function is tailored to several domain knowledge network modules to model the compact and explainable deep model-driven HIF network termed DM-fusion. The proposed deep model-driven neural network shows the feasibility and effectiveness of three parts, the specific HIF model, an iterative parameter learning scheme, and data-driven network architecture. Furthermore, the task-driven loss function strategy is proposed to achieve feature enhancement and preservation. Numerous experiments on four fusion tasks and downstream applications illustrate the advancement of DM-fusion compared with the state-of-the-art (SOTA) methods both in fusion quality and efficiency. The source code will be available soon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
杳鸢应助啊哈哈哈哈采纳,获得10
2秒前
X子千完成签到,获得积分10
3秒前
3秒前
思源应助Zirong采纳,获得10
4秒前
4秒前
棋士发布了新的文献求助10
6秒前
cc发布了新的文献求助10
7秒前
9秒前
半凡发布了新的文献求助10
9秒前
顷梦完成签到,获得积分10
9秒前
史小菜应助David采纳,获得20
11秒前
可乐完成签到 ,获得积分10
11秒前
chr发布了新的文献求助10
13秒前
Akim应助笨笨松采纳,获得10
14秒前
善良的冷梅完成签到,获得积分10
14秒前
Ava应助可靠靖琪采纳,获得10
15秒前
潇洒闭月完成签到,获得积分10
15秒前
乐乐完成签到 ,获得积分10
16秒前
16秒前
17秒前
阮大帅气完成签到,获得积分10
18秒前
情怀应助ZQ采纳,获得10
19秒前
李健的粉丝团团长应助cc采纳,获得10
19秒前
研友_VZG7GZ应助自觉的剑身采纳,获得10
20秒前
wxywxy完成签到,获得积分20
21秒前
赘婿应助LILI采纳,获得10
22秒前
chr完成签到,获得积分10
22秒前
茫茫发布了新的文献求助10
23秒前
24秒前
暖冬的向日葵完成签到,获得积分10
24秒前
ll完成签到,获得积分10
24秒前
25秒前
温冰雪应助木子青山采纳,获得10
28秒前
30秒前
Nakacoke77发布了新的文献求助10
30秒前
负责冰凡发布了新的文献求助10
33秒前
33秒前
Flori发布了新的文献求助30
35秒前
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951026
求助须知:如何正确求助?哪些是违规求助? 3496458
关于积分的说明 11082124
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801003