Usnic acid as potential inhibitors of BCL2 and P13K protein through network pharmacology-based analysis, molecular docking and molecular dynamic simulation

松萝酸 对接(动物) 分子动力学 化学 分子模型 计算生物学 生物化学 立体化学 生物 计算化学 医学 地衣 植物 护理部
作者
Kelvin Khai Voon Wong,Miah Roney,Md. Nazim Uddin,Syahrul Imran,Ahmad Mahfuz Gazali,Normaiza Zamri,Kamal Rullah,Mohd Fadhlizil Fasihi Mohd Aluwi
出处
期刊:Journal of Biomolecular Structure & Dynamics [Informa]
卷期号:41 (23): 13632-13645 被引量:10
标识
DOI:10.1080/07391102.2023.2178506
摘要

Usnic acid (UA) lately piqued the interest of researchers for its extraordinary biological characteristics, including anticancer activity. Here, the mechanism was clarified through network pharmacology,molecular docking and molecular dynamic simulation. Sixteen proteins were selected through network pharmacology study as they are probable to interact with UA. Out of these proteins, 13 were filtered from PPI network analysis based on their significance of interactions (p < 0.05). KEGG pathway analysis has also aided us in determining the three most significant protein targets for UA, which are BCL2, PI3KCA and PI3KCG. Therefore molecular docking and molecular dynamic (MD) simulations throughout 100 ns were performed for usnic acid onto the three proteins mentioned. However, UA's docking score in all proteins is lower than their co-crystalised ligand, especially for BCL2 (-36.5158 kcal/mol) and PI3KCA (-44.5995 kcal/mol) proteins. The only exception is PI3KCG which has comparable results with the co-crystallised ligand with (-41.9351 kcal/mol). Furthermore, MD simulation has also revealed that usnic acid does not stay fit in the protein throughout the simulation trajectory for PI3KCA protein evident from RMSF and RMSD plots. Nevertheless, it still poses good ability in inhibiting BCL2 and PI3KCG protein in MD simulation. In the end, usnic acid has exhibited good potential in the inhibition of PI3KCG proteins, rather than the other proteins mentioned. Thus further study on structural modification of usnic acid could enhance the ability of usnic acid in the inhibition of PI3KCG as anti-colorectal and anti-small cell lung cancer drug candidate.Communicated by Ramaswamy H. Sarma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhang发布了新的文献求助10
刚刚
qinqin发布了新的文献求助10
1秒前
顾夏包发布了新的文献求助30
1秒前
钰宁发布了新的文献求助10
1秒前
NexusExplorer应助ZZZ采纳,获得10
2秒前
3秒前
顺心书琴完成签到,获得积分10
3秒前
习习应助Nifeng采纳,获得10
3秒前
mrmrer发布了新的文献求助10
3秒前
5秒前
MUSTer一一完成签到 ,获得积分10
5秒前
通通通完成签到,获得积分10
5秒前
5秒前
务实的菓完成签到 ,获得积分10
6秒前
似水流年完成签到,获得积分10
6秒前
An慧完成签到,获得积分10
6秒前
Hello应助阿金采纳,获得10
6秒前
6秒前
6秒前
8秒前
顾夏包完成签到,获得积分10
8秒前
小土豆发布了新的文献求助50
9秒前
科研通AI5应助跑在颖采纳,获得10
9秒前
追寻代真发布了新的文献求助10
10秒前
mrmrer完成签到,获得积分20
10秒前
10秒前
10秒前
毛慢慢发布了新的文献求助10
11秒前
11秒前
今天不学习明天变垃圾完成签到,获得积分10
11秒前
12秒前
12秒前
布布完成签到,获得积分10
13秒前
一独白发布了新的文献求助10
13秒前
周周完成签到 ,获得积分10
13秒前
淡然完成签到,获得积分10
14秒前
明理小土豆完成签到,获得积分10
14秒前
刘国建郭菱香完成签到,获得积分10
14秒前
嘤嘤嘤完成签到,获得积分10
14秒前
九川应助粱自中采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762