材料科学
聚酰亚胺
复合数
电磁屏蔽
微球
导电体
电磁干扰
复合材料
电磁辐射
光电子学
光学
化学工程
图层(电子)
电子工程
物理
工程类
作者
Yali Zhang,Kunpeng Ruan,Kun Zhou,Junwei Gu
标识
DOI:10.1002/adma.202211642
摘要
Flexible multifunctional polymer-based electromagnetic interference (EMI) shielding composite films have important applications in the fields of 5G communication technology, wearable electronic devices, and artificial intelligence. Based on the design of a porous/multilayered structure and using polyimide (PI) as the matrix and polymethyl methacrylate (PMMA) microspheres as the template, flexible (Fe3 O4 /PI)-Ti3 C2 Tx -(Fe3 O4 /PI) composite films with controllable pore sizes and distribution of Ti3 C2 Tx hollow microspheres are successfully prepared by sacrificial template method. Owing to the porous/multilayered structure, when the pore size of the Ti3 C2 Tx hollow microspheres is 10 µm and the mass ratio of PMMA/Ti3 C2 Tx is 2:1, the (Fe3 O4 /PI)-Ti3 C2 Tx -(Fe3 O4 /PI) composite film has the most excellent EMI shielding performance, with EMI shielding effectiveness (EMI SE) of 85 dB. It is further verified by finite element simulation that the composite film has an excellent shielding effect on electromagnetic waves. In addition, the composite film has good thermal conductivity (thermal conductivity coefficient of 3.49 W (m·K)-1 ) and mechanical properties (tensile strength of 65.3 MPa). This flexible (Fe3 O4 /PI)-Ti3 C2 Tx -(Fe3 O4 /PI) composite film with excellent EMI shielding performance, thermal conductivity, and mechanical properties has demonstrated great potential for applications in EMI shielding protection for high-power, portable, and wearable flexible electronic devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI