预测效度
药物发现
药品
计算机科学
数据科学
心理学
风险分析(工程)
医学
临床心理学
药理学
生物信息学
生物
作者
Jack W. Scannell,James R. Bosley,John A. Hickman,Gerard R. Dawson,Hubert Truebel,Guilherme S. Ferreira,Duncan Richards,J. Mark Treherne
标识
DOI:10.1038/s41573-022-00552-x
摘要
Successful drug discovery is like finding oases of safety and efficacy in chemical and biological deserts. Screens in disease models, and other decision tools used in drug research and development (R&D), point towards oases when they score therapeutic candidates in a way that correlates with clinical utility in humans. Otherwise, they probably lead in the wrong direction. This line of thought can be quantified by using decision theory, in which 'predictive validity' is the correlation coefficient between the output of a decision tool and clinical utility across therapeutic candidates. Analyses based on this approach reveal that the detectability of good candidates is extremely sensitive to predictive validity, because the deserts are big and oases small. Both history and decision theory suggest that predictive validity is under-managed in drug R&D, not least because it is so hard to measure before projects succeed or fail later in the process. This article explains the influence of predictive validity on R&D productivity and discusses methods to evaluate and improve it, with the aim of supporting the application of more effective decision tools and catalysing investment in their creation.
科研通智能强力驱动
Strongly Powered by AbleSci AI