Evaluation of an automated intracranial aneurysm detection and rupture analysis approach using cascade detection and classification networks

人工智能 假阳性悖论 计算机科学 深度学习 分割 动脉瘤 模式识别(心理学) 管道(软件) 上下文图像分类 分类器(UML) 放射科 计算机视觉 医学 图像(数学) 程序设计语言
作者
Ke Wu,Dongdong Gu,Peihong Qi,Xiaohuan Cao,Dijia Wu,Lei Chen,Guoxiang Qu,Jiayu Wang,Xianpan Pan,Xuechun Wang,Yuntian Chen,Lizhou Chen,Zhong Xue,Jinhao Lyu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:102: 102126-102126 被引量:14
标识
DOI:10.1016/j.compmedimag.2022.102126
摘要

Intracranial aneurysm is commonly found in human brains especially for the elderly, and its rupture accounts for a high rate of subarachnoid hemorrhages. However, it is time-consuming and requires special expertise to pinpoint small aneurysms from computed tomography angiography (CTA) images. Deep learning-based detection has helped improve much efficiency but false-positives still render difficulty to be ruled out. To study the feasibility of deep learning algorithms for aneurysm analysis in clinical applications, this paper proposes a pipeline for aneurysm detection, segmentation, and rupture classification and validates its performance using CTA images of 1508 subjects. A cascade aneurysm detection model is employed by first using a fine-tuned feature pyramid network (FPN) for candidate detection and then applying a dual-channel ResNet aneurysm classifier to further reduce false positives. Detected aneurysms are then segmented by applying a traditional 3D V-Net to their image patches. Radiomics features of aneurysms are extracted after detection and segmentation. The machine-learning-based and deep learning-based rupture classification can be used to distinguish ruptured and un-ruptured ones. Experimental results show that the dual-channel ResNet aneurysm classifier utilizing image and vesselness information helps boost sensitivity of detection compared to single image channel input. Overall, the proposed pipeline can achieve a sensitivity of 90 % for 1 false positive per image, and 95 % for 2 false positives per image. For rupture classification the area under curve (AUC) of 0.906 can be achieved for the testing dataset. The results suggest feasibility of the pipeline for potential clinical use to assist radiologists in aneurysm detection and classification of ruptured and un-ruptured aneurysms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆黑米完成签到,获得积分10
刚刚
RSC完成签到,获得积分10
刚刚
刚刚
科研通AI2S应助YEEze采纳,获得10
1秒前
善学以致用应助翔96采纳,获得10
1秒前
MrPao发布了新的文献求助10
1秒前
1234发布了新的文献求助10
2秒前
2秒前
在水一方应助席楠采纳,获得10
3秒前
岛屿完成签到,获得积分10
4秒前
搜集达人应助白华苍松采纳,获得10
5秒前
朝霞完成签到,获得积分10
5秒前
MMM发布了新的文献求助10
7秒前
7秒前
英俊的铭应助喻修杰采纳,获得10
8秒前
丘比特应助郭娅楠采纳,获得10
10秒前
juziyaya应助嘟嘟大魔王采纳,获得30
10秒前
azj完成签到,获得积分10
10秒前
11秒前
无花果应助自然棒棒糖采纳,获得10
12秒前
派大星完成签到,获得积分10
12秒前
风趣的芙关注了科研通微信公众号
13秒前
星辰大海应助cyxcr采纳,获得10
13秒前
vikey发布了新的文献求助20
14秒前
14秒前
yuting完成签到,获得积分10
14秒前
薰硝壤应助尊敬的芷卉采纳,获得30
14秒前
SCI完成签到 ,获得积分10
14秒前
15秒前
科研新秀z发布了新的文献求助10
16秒前
16秒前
成就猫咪发布了新的文献求助10
17秒前
席楠发布了新的文献求助10
18秒前
19秒前
弯弯绕绕嘻嘻嘻完成签到,获得积分10
19秒前
waa发布了新的文献求助10
19秒前
ggjhgh发布了新的文献求助10
19秒前
翔96发布了新的文献求助10
21秒前
WUUU发布了新的文献求助20
22秒前
郭娅楠发布了新的文献求助10
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140698
求助须知:如何正确求助?哪些是违规求助? 2791571
关于积分的说明 7799545
捐赠科研通 2447907
什么是DOI,文献DOI怎么找? 1302182
科研通“疑难数据库(出版商)”最低求助积分说明 626459
版权声明 601194