Evaluation of an automated intracranial aneurysm detection and rupture analysis approach using cascade detection and classification networks

人工智能 假阳性悖论 计算机科学 深度学习 分割 动脉瘤 模式识别(心理学) 管道(软件) 上下文图像分类 分类器(UML) 放射科 计算机视觉 医学 图像(数学) 程序设计语言
作者
Ke Wu,Dongdong Gu,Peihong Qi,Xiaohuan Cao,Dijia Wu,Lei Chen,Guoxiang Qu,Jiayu Wang,Xianpan Pan,Xuechun Wang,Yuntian Chen,Lizhou Chen,Zhong Xue,Jinhao Lyu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:102: 102126-102126 被引量:27
标识
DOI:10.1016/j.compmedimag.2022.102126
摘要

Intracranial aneurysm is commonly found in human brains especially for the elderly, and its rupture accounts for a high rate of subarachnoid hemorrhages. However, it is time-consuming and requires special expertise to pinpoint small aneurysms from computed tomography angiography (CTA) images. Deep learning-based detection has helped improve much efficiency but false-positives still render difficulty to be ruled out. To study the feasibility of deep learning algorithms for aneurysm analysis in clinical applications, this paper proposes a pipeline for aneurysm detection, segmentation, and rupture classification and validates its performance using CTA images of 1508 subjects. A cascade aneurysm detection model is employed by first using a fine-tuned feature pyramid network (FPN) for candidate detection and then applying a dual-channel ResNet aneurysm classifier to further reduce false positives. Detected aneurysms are then segmented by applying a traditional 3D V-Net to their image patches. Radiomics features of aneurysms are extracted after detection and segmentation. The machine-learning-based and deep learning-based rupture classification can be used to distinguish ruptured and un-ruptured ones. Experimental results show that the dual-channel ResNet aneurysm classifier utilizing image and vesselness information helps boost sensitivity of detection compared to single image channel input. Overall, the proposed pipeline can achieve a sensitivity of 90 % for 1 false positive per image, and 95 % for 2 false positives per image. For rupture classification the area under curve (AUC) of 0.906 can be achieved for the testing dataset. The results suggest feasibility of the pipeline for potential clinical use to assist radiologists in aneurysm detection and classification of ruptured and un-ruptured aneurysms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ccyy完成签到 ,获得积分10
1秒前
呼君伟完成签到,获得积分10
1秒前
苻思远完成签到 ,获得积分10
1秒前
秋秋儿发布了新的文献求助10
2秒前
2秒前
2秒前
Owen应助久等雨归采纳,获得10
2秒前
3秒前
药药55发布了新的文献求助10
3秒前
CodeCraft应助natus采纳,获得10
3秒前
1111发布了新的文献求助10
3秒前
壹贰叁完成签到,获得积分10
3秒前
RaynorHank发布了新的文献求助10
4秒前
哆啦A淼完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
英勇滑板发布了新的文献求助10
4秒前
5秒前
5秒前
alabala完成签到,获得积分20
5秒前
花花完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
8秒前
Jack发布了新的文献求助10
8秒前
落羽完成签到,获得积分10
8秒前
星辰大海应助张富贵采纳,获得10
9秒前
望向天空的鱼完成签到 ,获得积分10
9秒前
11秒前
GPTea完成签到,获得积分0
12秒前
我爱科研发布了新的文献求助30
12秒前
年年发布了新的文献求助10
12秒前
cml发布了新的文献求助10
13秒前
英姑应助yundanli采纳,获得10
13秒前
田様应助愉快书琴采纳,获得10
13秒前
桐桐应助Jack采纳,获得10
13秒前
热情礼貌一问三不知完成签到 ,获得积分10
15秒前
好的呢完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735678
求助须知:如何正确求助?哪些是违规求助? 5361982
关于积分的说明 15330919
捐赠科研通 4879862
什么是DOI,文献DOI怎么找? 2622363
邀请新用户注册赠送积分活动 1571343
关于科研通互助平台的介绍 1528175