Evaluation of an automated intracranial aneurysm detection and rupture analysis approach using cascade detection and classification networks

人工智能 假阳性悖论 计算机科学 深度学习 分割 动脉瘤 模式识别(心理学) 管道(软件) 上下文图像分类 分类器(UML) 放射科 计算机视觉 医学 图像(数学) 程序设计语言
作者
Ke Wu,Dongdong Gu,Peihong Qi,Xiaohuan Cao,Dijia Wu,Lei Chen,Guoxiang Qu,Jiayu Wang,Xianpan Pan,Xuechun Wang,Yuntian Chen,Lizhou Chen,Zhong Xue,Jinhao Lyu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:102: 102126-102126 被引量:14
标识
DOI:10.1016/j.compmedimag.2022.102126
摘要

Intracranial aneurysm is commonly found in human brains especially for the elderly, and its rupture accounts for a high rate of subarachnoid hemorrhages. However, it is time-consuming and requires special expertise to pinpoint small aneurysms from computed tomography angiography (CTA) images. Deep learning-based detection has helped improve much efficiency but false-positives still render difficulty to be ruled out. To study the feasibility of deep learning algorithms for aneurysm analysis in clinical applications, this paper proposes a pipeline for aneurysm detection, segmentation, and rupture classification and validates its performance using CTA images of 1508 subjects. A cascade aneurysm detection model is employed by first using a fine-tuned feature pyramid network (FPN) for candidate detection and then applying a dual-channel ResNet aneurysm classifier to further reduce false positives. Detected aneurysms are then segmented by applying a traditional 3D V-Net to their image patches. Radiomics features of aneurysms are extracted after detection and segmentation. The machine-learning-based and deep learning-based rupture classification can be used to distinguish ruptured and un-ruptured ones. Experimental results show that the dual-channel ResNet aneurysm classifier utilizing image and vesselness information helps boost sensitivity of detection compared to single image channel input. Overall, the proposed pipeline can achieve a sensitivity of 90 % for 1 false positive per image, and 95 % for 2 false positives per image. For rupture classification the area under curve (AUC) of 0.906 can be achieved for the testing dataset. The results suggest feasibility of the pipeline for potential clinical use to assist radiologists in aneurysm detection and classification of ruptured and un-ruptured aneurysms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助Ll采纳,获得10
1秒前
1秒前
yu完成签到 ,获得积分10
1秒前
小蘑菇应助zzznznnn采纳,获得10
1秒前
Orange应助俊秀的白猫采纳,获得30
2秒前
深情安青应助小可采纳,获得10
2秒前
2秒前
情怀应助pearl采纳,获得10
2秒前
3秒前
所所应助cybbbbbb采纳,获得10
3秒前
果汁发布了新的文献求助10
3秒前
4秒前
4秒前
Lucas应助柚子采纳,获得10
4秒前
MADKAI发布了新的文献求助10
4秒前
5秒前
爆米花应助咕咕咕采纳,获得10
5秒前
zxy发布了新的文献求助10
5秒前
6秒前
醉人的仔发布了新的文献求助10
6秒前
daguan完成签到,获得积分10
6秒前
桐桐应助nikai采纳,获得10
6秒前
7秒前
8秒前
123完成签到,获得积分10
8秒前
善良香岚发布了新的文献求助10
8秒前
9秒前
9秒前
444完成签到,获得积分10
9秒前
任一发布了新的文献求助30
9秒前
莉莉发布了新的文献求助10
10秒前
Zoe发布了新的文献求助10
10秒前
Hover完成签到,获得积分10
10秒前
自然的茉莉完成签到,获得积分10
11秒前
11秒前
Mandy完成签到,获得积分10
11秒前
12秒前
脑洞疼应助qaq采纳,获得10
12秒前
世界尽头发布了新的文献求助10
12秒前
小二郎应助科研民工采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759