Evaluation of an automated intracranial aneurysm detection and rupture analysis approach using cascade detection and classification networks

人工智能 假阳性悖论 计算机科学 深度学习 分割 动脉瘤 模式识别(心理学) 管道(软件) 上下文图像分类 分类器(UML) 放射科 计算机视觉 医学 图像(数学) 程序设计语言
作者
Ke Wu,Dongdong Gu,Peihong Qi,Xiaohuan Cao,Dijia Wu,Lei Chen,Guoxiang Qu,Jiayu Wang,Xianpan Pan,Xuechun Wang,Yuntian Chen,Lizhou Chen,Zhong Xue,Jinhao Lyu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:102: 102126-102126 被引量:27
标识
DOI:10.1016/j.compmedimag.2022.102126
摘要

Intracranial aneurysm is commonly found in human brains especially for the elderly, and its rupture accounts for a high rate of subarachnoid hemorrhages. However, it is time-consuming and requires special expertise to pinpoint small aneurysms from computed tomography angiography (CTA) images. Deep learning-based detection has helped improve much efficiency but false-positives still render difficulty to be ruled out. To study the feasibility of deep learning algorithms for aneurysm analysis in clinical applications, this paper proposes a pipeline for aneurysm detection, segmentation, and rupture classification and validates its performance using CTA images of 1508 subjects. A cascade aneurysm detection model is employed by first using a fine-tuned feature pyramid network (FPN) for candidate detection and then applying a dual-channel ResNet aneurysm classifier to further reduce false positives. Detected aneurysms are then segmented by applying a traditional 3D V-Net to their image patches. Radiomics features of aneurysms are extracted after detection and segmentation. The machine-learning-based and deep learning-based rupture classification can be used to distinguish ruptured and un-ruptured ones. Experimental results show that the dual-channel ResNet aneurysm classifier utilizing image and vesselness information helps boost sensitivity of detection compared to single image channel input. Overall, the proposed pipeline can achieve a sensitivity of 90 % for 1 false positive per image, and 95 % for 2 false positives per image. For rupture classification the area under curve (AUC) of 0.906 can be achieved for the testing dataset. The results suggest feasibility of the pipeline for potential clinical use to assist radiologists in aneurysm detection and classification of ruptured and un-ruptured aneurysms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艾路完成签到,获得积分10
刚刚
前行的灿发布了新的文献求助10
1秒前
1秒前
爱喝佳得乐完成签到,获得积分10
3秒前
酷波er应助程天佑采纳,获得10
7秒前
7秒前
fenglin4620完成签到,获得积分10
9秒前
10秒前
直率惜文完成签到,获得积分10
13秒前
why911发布了新的文献求助10
14秒前
今后应助lxwwwxl采纳,获得10
16秒前
慕青应助小小的苹果采纳,获得10
18秒前
小李李完成签到,获得积分10
19秒前
19秒前
20秒前
芥楠完成签到,获得积分10
20秒前
21秒前
22秒前
科研通AI6应助liu采纳,获得10
25秒前
26秒前
27秒前
28秒前
29秒前
LLL发布了新的文献求助10
30秒前
程天佑发布了新的文献求助10
34秒前
友好天蓝发布了新的文献求助50
34秒前
朴素的士晋完成签到 ,获得积分10
34秒前
天真若云完成签到,获得积分10
35秒前
ivy完成签到,获得积分10
37秒前
虚心的白莲完成签到,获得积分10
37秒前
搜集达人应助尘默采纳,获得20
37秒前
秀丽奎完成签到 ,获得积分10
38秒前
越明年完成签到,获得积分10
38秒前
39秒前
40秒前
王振兴完成签到 ,获得积分10
41秒前
ivy发布了新的文献求助10
41秒前
baidi发布了新的文献求助10
44秒前
gfsuen完成签到 ,获得积分10
44秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560014
求助须知:如何正确求助?哪些是违规求助? 4645187
关于积分的说明 14674421
捐赠科研通 4586310
什么是DOI,文献DOI怎么找? 2516345
邀请新用户注册赠送积分活动 1490000
关于科研通互助平台的介绍 1460841