Evaluation of an automated intracranial aneurysm detection and rupture analysis approach using cascade detection and classification networks

人工智能 假阳性悖论 计算机科学 深度学习 分割 动脉瘤 模式识别(心理学) 管道(软件) 上下文图像分类 分类器(UML) 放射科 计算机视觉 医学 图像(数学) 程序设计语言
作者
Ke Wu,Dongdong Gu,Peihong Qi,Xiaohuan Cao,Dijia Wu,Lei Chen,Guoxiang Qu,Jiayu Wang,Xianpan Pan,Xuechun Wang,Yuntian Chen,Lizhou Chen,Zhong Xue,Jinhao Lyu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:102: 102126-102126 被引量:14
标识
DOI:10.1016/j.compmedimag.2022.102126
摘要

Intracranial aneurysm is commonly found in human brains especially for the elderly, and its rupture accounts for a high rate of subarachnoid hemorrhages. However, it is time-consuming and requires special expertise to pinpoint small aneurysms from computed tomography angiography (CTA) images. Deep learning-based detection has helped improve much efficiency but false-positives still render difficulty to be ruled out. To study the feasibility of deep learning algorithms for aneurysm analysis in clinical applications, this paper proposes a pipeline for aneurysm detection, segmentation, and rupture classification and validates its performance using CTA images of 1508 subjects. A cascade aneurysm detection model is employed by first using a fine-tuned feature pyramid network (FPN) for candidate detection and then applying a dual-channel ResNet aneurysm classifier to further reduce false positives. Detected aneurysms are then segmented by applying a traditional 3D V-Net to their image patches. Radiomics features of aneurysms are extracted after detection and segmentation. The machine-learning-based and deep learning-based rupture classification can be used to distinguish ruptured and un-ruptured ones. Experimental results show that the dual-channel ResNet aneurysm classifier utilizing image and vesselness information helps boost sensitivity of detection compared to single image channel input. Overall, the proposed pipeline can achieve a sensitivity of 90 % for 1 false positive per image, and 95 % for 2 false positives per image. For rupture classification the area under curve (AUC) of 0.906 can be achieved for the testing dataset. The results suggest feasibility of the pipeline for potential clinical use to assist radiologists in aneurysm detection and classification of ruptured and un-ruptured aneurysms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水中望月完成签到,获得积分10
1秒前
000完成签到,获得积分10
1秒前
2秒前
Maga发布了新的文献求助20
2秒前
2秒前
云朵完成签到 ,获得积分10
2秒前
ssnha完成签到 ,获得积分10
2秒前
3秒前
别闹闹发布了新的文献求助10
4秒前
WaNgZY完成签到,获得积分10
5秒前
huxilulu发布了新的文献求助10
6秒前
8秒前
汉堡包应助江屿采纳,获得10
8秒前
yuan完成签到,获得积分10
8秒前
久久发布了新的文献求助10
8秒前
水中望月发布了新的文献求助10
8秒前
9秒前
有一个盆发布了新的文献求助10
9秒前
可爱的函函应助su123采纳,获得30
11秒前
酷波er应助如风随水采纳,获得10
12秒前
清爽电脑应助独特的尔风采纳,获得30
13秒前
13秒前
小小富完成签到,获得积分10
13秒前
冯123发布了新的文献求助10
14秒前
14秒前
威武飞双完成签到,获得积分10
14秒前
14秒前
仁爱太阳发布了新的文献求助10
14秒前
辛勤的刺猬完成签到 ,获得积分10
16秒前
111111111完成签到,获得积分20
18秒前
xxxL发布了新的文献求助10
18秒前
J_C_Van发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
传奇3应助加快步伐采纳,获得10
21秒前
21秒前
壮观的雅绿完成签到,获得积分10
22秒前
sigla完成签到 ,获得积分10
22秒前
111111111发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952600
求助须知:如何正确求助?哪些是违规求助? 3498061
关于积分的说明 11090076
捐赠科研通 3228597
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801344