An effective point cloud registration method for three-dimensional reconstruction of pressure piping

管道 点云 点(几何) 云计算 计算机科学 人工智能 计算机视觉 工程类 机械工程 数学 几何学 操作系统
作者
Yulong Zhang,Enguang Guan,Baoyu Wang,Yanzheng Zhao
出处
期刊:Robotica [Cambridge University Press]
卷期号:: 1-18
标识
DOI:10.1017/s0263574724000845
摘要

Abstract At present, industrial scenes with sparse features and weak textures are widely encountered, and the three-dimensional reconstruction of such scenes is a recognized problem. Pressure pipelines have a wide range of applications in fields such as petroleum engineering, chemical engineering, and hydropower station engineering. However, there is no mature solution for the three-dimensional reconstruction of pressure pipes. The main reason is that the typical scenes in which pressure pipes are found also have relatively few features and textures. Traditional three-dimensional reconstruction algorithms based on feature extraction are largely ineffective for such scenes that are lacking in features. In view of the above problems, this paper proposes an improved interframe registration algorithm based on point cloud fitting with cylinder axis vector constraints. By incorporating geometric feature parameters of a cylindrical pressure pipeline, specifically the axis vector of the cylinder, to constrain the traditional iterative closest point algorithm, the accuracy of point cloud registration can be improved in scenarios lacking features and textures, and some environmental uncertainties can be overcome. Finally, using actual laser point cloud data collected from pressure pipelines, the proposed fitting-based point cloud registration algorithm with cylinder axis vector constraints is tested. The experimental results show that under the same conditions, compared with other open-source point cloud registration algorithms, the proposed method can achieve higher registration accuracy. Moreover, integrating this algorithm into an open-source three-dimensional reconstruction algorithm framework can lead to better reconstruction results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
32166发布了新的文献求助10
1秒前
激昂的白凡应助木子李采纳,获得30
1秒前
1秒前
1秒前
情怀应助臭臭采纳,获得10
2秒前
Ethan发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
4秒前
善学以致用应助xx采纳,获得10
5秒前
琉璃发布了新的文献求助10
5秒前
陈莹发布了新的文献求助30
5秒前
万能图书馆应助zzz采纳,获得10
6秒前
6秒前
bkagyin应助meimei采纳,获得10
7秒前
zxf发布了新的文献求助10
7秒前
a初心不变完成签到,获得积分10
8秒前
王昊然发布了新的文献求助10
8秒前
Jasper应助黑煤球采纳,获得10
9秒前
小圆圈发布了新的文献求助10
9秒前
suiwuya发布了新的文献求助10
9秒前
追寻栾完成签到,获得积分10
10秒前
ff发布了新的文献求助10
10秒前
11秒前
11秒前
研团团完成签到,获得积分10
11秒前
Ran发布了新的文献求助10
12秒前
所所应助似鱼采纳,获得10
12秒前
12秒前
清新的老四完成签到,获得积分10
13秒前
14秒前
一颗树发布了新的文献求助10
14秒前
14秒前
15秒前
15秒前
15秒前
AAASD完成签到,获得积分10
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148940
求助须知:如何正确求助?哪些是违规求助? 2800005
关于积分的说明 7837927
捐赠科研通 2457512
什么是DOI,文献DOI怎么找? 1307891
科研通“疑难数据库(出版商)”最低求助积分说明 628322
版权声明 601685