An effective point cloud registration method for three-dimensional reconstruction of pressure piping

管道 点云 点(几何) 云计算 计算机科学 人工智能 计算机视觉 工程类 机械工程 数学 几何学 操作系统
作者
Yulong Zhang,Enguang Guan,Baoyu Wang,Yanzheng Zhao
出处
期刊:Robotica [Cambridge University Press]
卷期号:: 1-18
标识
DOI:10.1017/s0263574724000845
摘要

Abstract At present, industrial scenes with sparse features and weak textures are widely encountered, and the three-dimensional reconstruction of such scenes is a recognized problem. Pressure pipelines have a wide range of applications in fields such as petroleum engineering, chemical engineering, and hydropower station engineering. However, there is no mature solution for the three-dimensional reconstruction of pressure pipes. The main reason is that the typical scenes in which pressure pipes are found also have relatively few features and textures. Traditional three-dimensional reconstruction algorithms based on feature extraction are largely ineffective for such scenes that are lacking in features. In view of the above problems, this paper proposes an improved interframe registration algorithm based on point cloud fitting with cylinder axis vector constraints. By incorporating geometric feature parameters of a cylindrical pressure pipeline, specifically the axis vector of the cylinder, to constrain the traditional iterative closest point algorithm, the accuracy of point cloud registration can be improved in scenarios lacking features and textures, and some environmental uncertainties can be overcome. Finally, using actual laser point cloud data collected from pressure pipelines, the proposed fitting-based point cloud registration algorithm with cylinder axis vector constraints is tested. The experimental results show that under the same conditions, compared with other open-source point cloud registration algorithms, the proposed method can achieve higher registration accuracy. Moreover, integrating this algorithm into an open-source three-dimensional reconstruction algorithm framework can lead to better reconstruction results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PGONE完成签到,获得积分10
刚刚
浮游应助Esther采纳,获得10
刚刚
叶子完成签到,获得积分10
刚刚
1秒前
吃的完成签到,获得积分10
1秒前
社恐Forza完成签到,获得积分10
3秒前
3秒前
univ完成签到,获得积分10
4秒前
anonym11完成签到,获得积分10
4秒前
Autaro完成签到,获得积分10
4秒前
4秒前
AW发布了新的文献求助10
4秒前
金鑫水淼完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
研友_Z6k7B8发布了新的文献求助10
6秒前
fly完成签到,获得积分10
6秒前
风趣的沛珊完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
zsg11067完成签到,获得积分20
10秒前
11秒前
YU完成签到,获得积分10
11秒前
Apple发布了新的文献求助10
11秒前
称心的高丽完成签到 ,获得积分10
12秒前
舒适的初雪完成签到,获得积分10
12秒前
科研通AI6应助一杯甜酒采纳,获得10
12秒前
13秒前
123完成签到,获得积分10
13秒前
小白完成签到,获得积分10
13秒前
认真的雪完成签到,获得积分10
13秒前
茹茹完成签到 ,获得积分10
13秒前
大方小松完成签到,获得积分10
13秒前
不散的和弦完成签到,获得积分10
13秒前
幽默的醉冬完成签到,获得积分10
13秒前
GSQ完成签到,获得积分20
14秒前
科研通AI6应助橘子采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664907
求助须知:如何正确求助?哪些是违规求助? 4872925
关于积分的说明 15109723
捐赠科研通 4823813
什么是DOI,文献DOI怎么找? 2582554
邀请新用户注册赠送积分活动 1536508
关于科研通互助平台的介绍 1495074