Machine learning in energy storage material discovery and performance prediction

储能 计算机科学 能量(信号处理) 机器学习 人工智能 物理 热力学 功率(物理) 量子力学
作者
Guo-Chang Huang,Fuqiang Huang,Wujie Dong
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:492: 152294-152294 被引量:5
标识
DOI:10.1016/j.cej.2024.152294
摘要

Energy storage material is one of the critical materials in modern life. However, due to the difficulty of material development, the existing mainstream batteries still use the materials system developed decades ago. Machine learning (ML) is rapidly changing the paradigm of energy storage material discovery and performance prediction due to its ability to solve complex problems efficiently and automatically. Various excellent works are constantly emerging in the field of ML assisted or dominated development of energy storage material, such as exploring of new materials, studying of battery performance, investigating of battery aging mechanism. In this paper, we methodically review recent advances in discovery and performance prediction of energy storage materials relying on ML. After a brief introduction to the general workflow of ML, we provide an overview of the current status and dilemmas of ML databases commonly used in energy storage materials. The typical applications and examples of ML to the finding of novel energy storage materials and the performance forecasting of electrode and electrolyte materials. Furthermore, we explore the dilemmas that will be faced in the development of applied ML-assisted or dominated energy storage materials and propose a corresponding outlook. This review systematically summarizes the current development of ML-assisted energy storage materials research, which is expected to point the way for its further development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助123采纳,获得10
2秒前
huo完成签到,获得积分20
2秒前
张张发布了新的文献求助10
3秒前
3秒前
段小麻完成签到,获得积分20
5秒前
6秒前
7秒前
Gustavo发布了新的文献求助10
8秒前
9秒前
机灵夜云发布了新的文献求助10
10秒前
我是老大应助bwq采纳,获得10
12秒前
isabellae发布了新的文献求助100
12秒前
蓝胖子应助123采纳,获得30
12秒前
klio发布了新的文献求助10
14秒前
冰海完成签到,获得积分10
14秒前
Gustavo完成签到,获得积分10
14秒前
斯文败类应助大鱼采纳,获得10
15秒前
16秒前
ding应助埋头科研采纳,获得10
17秒前
17秒前
落寞的无施完成签到,获得积分20
18秒前
搜集达人应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
SciGPT应助科研通管家采纳,获得10
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
Singularity应助科研通管家采纳,获得20
19秒前
大炮弹发布了新的文献求助10
19秒前
烟花应助科研通管家采纳,获得10
19秒前
Tricia应助科研通管家采纳,获得20
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
开心应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
jane完成签到,获得积分20
19秒前
20秒前
所所应助科研通管家采纳,获得10
20秒前
sss发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084398
求助须知:如何正确求助?哪些是违规求助? 2737347
关于积分的说明 7544854
捐赠科研通 2386981
什么是DOI,文献DOI怎么找? 1265740
科研通“疑难数据库(出版商)”最低求助积分说明 613167
版权声明 598320