MolLoG: A Molecular Level Interpretability Model Bridging Local to Global for Predicting Drug Target Interactions

可解释性 计算机科学 桥接(联网) 特征(语言学) 人工智能 特征学习 机器学习 图形 代表(政治) 理论计算机科学 计算机网络 哲学 语言学 政治 政治学 法学
作者
Bao-Ming Feng,Yuanyuan Zhang,Xiaochen Zhou,Jinlong Wang,Yinfei Feng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (10): 4348-4358 被引量:1
标识
DOI:10.1021/acs.jcim.4c00171
摘要

Developing new pharmaceuticals is a costly and time-consuming endeavor fraught with significant safety risks. A critical aspect of drug research and disease therapy is discerning the existence of interactions between drugs and proteins. The evolution of deep learning (DL) in computer science has been remarkably aided in this regard in recent years. Yet, two challenges remain: (i) balancing the extraction of profound, local cohesive characteristics while warding off gradient disappearance and (ii) globally representing and understanding the interactions between the drug and target local attributes, which is vital for delivering molecular level insights indispensable to drug development. In response to these challenges, we propose a DL network structure, MolLoG, primarily comprising two modules: local feature encoders (LFE) and global interactive learning (GIL). Within the LFE module, graph convolution networks and leap blocks capture the local features of drug and protein molecules, respectively. The GIL module enables the efficient amalgamation of feature information, facilitating the global learning of feature structural semantics and procuring multihead attention weights for abstract features stemming from two modalities, providing biologically pertinent explanations for black-box results. Finally, predictive outcomes are achieved by decoding the unified representation via a multilayer perceptron. Our experimental analysis reveals that MolLoG outperforms several cutting-edge baselines across four data sets, delivering superior overall performance and providing satisfactory results when elucidating various facets of drug–target interaction predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助科研通管家采纳,获得10
刚刚
华仔应助科研通管家采纳,获得30
刚刚
Orange应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
一一应助科研通管家采纳,获得20
1秒前
klb13应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
华仔应助god采纳,获得10
2秒前
3秒前
Sandy完成签到,获得积分10
4秒前
Hello应助Jemezs采纳,获得10
4秒前
zxy发布了新的文献求助10
6秒前
从容襄完成签到,获得积分10
7秒前
help3q完成签到,获得积分10
7秒前
7秒前
7秒前
一点就通发布了新的文献求助10
8秒前
美好斓发布了新的文献求助10
9秒前
zhenzheng完成签到 ,获得积分10
9秒前
大模型应助Chen二月三石采纳,获得10
11秒前
11秒前
god发布了新的文献求助10
11秒前
菜芽君完成签到,获得积分10
11秒前
刘岩完成签到,获得积分10
12秒前
12秒前
666999完成签到,获得积分10
16秒前
泊声发布了新的文献求助10
16秒前
16秒前
高大又蓝完成签到,获得积分20
20秒前
21秒前
大狒狒发布了新的文献求助10
22秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212011
求助须知:如何正确求助?哪些是违规求助? 2860865
关于积分的说明 8126364
捐赠科研通 2526752
什么是DOI,文献DOI怎么找? 1360566
科研通“疑难数据库(出版商)”最低求助积分说明 643243
邀请新用户注册赠送积分活动 615469