数据集成
数据科学
精密医学
转化式学习
数据共享
大数据
计算机科学
串联(数学)
生命银行
系统医学
人工智能
系统生物学
生物信息学
医学
数据挖掘
生物
心理学
病理
教育学
替代医学
数学
组合数学
作者
Yonghyun Nam,Jae‐Sik Kim,Sang‐Hyuk Jung,Jakob Woerner,Erica Suh,Dong‐Gi Lee,Manu Shivakumar,Matthew E. Lee,Dokyoon Kim
出处
期刊:Annual review of biomedical data science
[Annual Reviews]
日期:2024-05-20
标识
DOI:10.1146/annurev-biodatasci-102523-103801
摘要
The integration of multiomics data with detailed phenotypic insights from electronic health records marks a paradigm shift in biomedical research, offering unparalleled holistic views into health and disease pathways. This review delineates the current landscape of multimodal omics data integration, emphasizing its transformative potential in generating a comprehensive understanding of complex biological systems. We explore robust methodologies for data integration, ranging from concatenation-based to transformation-based and network-based strategies, designed to harness the intricate nuances of diverse data types. Our discussion extends from incorporating large-scale population biobanks to dissecting high-dimensional omics layers at the single-cell level. The review underscores the emerging role of large language models in artificial intelligence, anticipating their influence as a near-future pivot in data integration approaches. Highlighting both achievements and hurdles, we advocate for a concerted effort toward sophisticated integration models, fortifying the foundation for groundbreaking discoveries in precision medicine.
科研通智能强力驱动
Strongly Powered by AbleSci AI