Risk factors for secondary thyroid cancer in patients with breast cancer: a propensity‑matched SEER analysis

医学 乳腺癌 肿瘤科 列线图 内科学 甲状腺癌 癌症 比例危险模型 阶段(地层学) 甲状腺 妇科 生物 古生物学
作者
Yizhuo Diao,Ruiqi Wang,Jiaxue Cui,Chenxin Jin,Yongxing Chen,Xiaofeng Li
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-59209-x
摘要

Abstract With the rapid development of imaging technology and comprehensive treatment in modern medicine, the early diagnosis rate of breast cancer is constantly improving, and the prognosis is also improving; As breast cancer patients survive longer, the risk of developing second primary cancers increases. Since both breast and thyroid are Hormone receptor sensitive organs, which are regulated by hypothalamus pituitary target gland endocrine axis, changes in body endocrine status may lead to the occurrence of these two diseases in succession or simultaneously. This study extracted clinical data and survival outcomes of breast cancer patients registered in the Surveillance, Epidemiology and End Results (SEER) database between 2010 and 2019. After matching the case and controls with propensity scores, the selected patients were randomly split into training and test datasets at a ratio of 7:3. Univariate and multivariate COX proportional regression analysis is used to determine independent risk factors for secondary thyroid cancer and construct a column chart prediction model. Age, ethnicity, whether radiotherapy, tumor primary location, N stage, M stage were identified by Cox regression as independent factors affecting secondary thyroid cancer in patients with breast cancer patients, and a risk factor nomogram was established to predict patients’ 3 and 5 year survival probabilities. The AUC values for 3 and 5 years in the training set were 0.713, 0.707, and the c-index was 0.693 (95% CI 0.67144, 0.71456), and the AUC values for 3 and 5 years in the validation set were 0.681, 0.681, and the c-index was 0.673 (95% CI 0.64164, 0.70436), respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chris完成签到,获得积分10
刚刚
cookie发布了新的文献求助10
1秒前
胖仔完成签到,获得积分10
1秒前
Chan0501完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
duxinyue发布了新的文献求助10
3秒前
汉堡转转转完成签到,获得积分10
4秒前
喵酱发布了新的文献求助30
4秒前
6666完成签到,获得积分10
4秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
5秒前
wjn完成签到,获得积分10
5秒前
6秒前
竹子完成签到,获得积分10
6秒前
MAKEYF完成签到 ,获得积分10
6秒前
7秒前
Owen应助猪猪hero采纳,获得10
7秒前
8秒前
CipherSage应助海棠yiyi采纳,获得50
9秒前
Khr1stINK发布了新的文献求助10
9秒前
9秒前
脑洞疼应助卡卡采纳,获得10
9秒前
9秒前
Rrr发布了新的文献求助10
10秒前
科研通AI5应助zmy采纳,获得10
11秒前
William鉴哲发布了新的文献求助10
11秒前
情怀应助只道寻常采纳,获得10
12秒前
12秒前
cyy完成签到,获得积分20
12秒前
orixero应助小庄采纳,获得10
13秒前
14秒前
侦察兵发布了新的文献求助10
14秒前
司徒元瑶完成签到 ,获得积分10
14秒前
梓榆发布了新的文献求助10
14秒前
14秒前
sweetbearm应助通~采纳,获得10
14秒前
斯文败类应助成就映秋采纳,获得10
15秒前
123456完成签到,获得积分10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794