A Review of Machine Learning and QSAR/QSPR Predictions for Complexes of Organic Molecules with Cyclodextrins

数量结构-活动关系 分子描述符 化学 机器学习 人工神经网络 支持向量机 梯度升压 人工智能 Boosting(机器学习) 分子 计算机科学 计算化学 生化工程 适用范围 随机森林 生物系统 有机化学 工程类 生物
作者
Dariusz Boczar,Katarzyna Michalska
出处
期刊:Molecules [MDPI AG]
卷期号:29 (13): 3159-3159 被引量:1
标识
DOI:10.3390/molecules29133159
摘要

Cyclodextrins are macrocyclic rings composed of glucose residues. Due to their remarkable structural properties, they can form host–guest inclusion complexes, which is why they are frequently used in the pharmaceutical, cosmetic, and food industries, as well as in environmental and analytical chemistry. This review presents the reports from 2011 to 2023 on the quantitative structure–activity/property relationship (QSAR/QSPR) approach, which is primarily employed to predict the thermodynamic stability of inclusion complexes. This article extensively discusses the significant developments related to the size of available experimental data, the available sets of descriptors, and the machine learning (ML) algorithms used, such as support vector machines, random forests, artificial neural networks, and gradient boosting. As QSAR/QPR analysis only requires molecular structures of guests and experimental values of stability constants, this approach may be particularly useful for predicting these values for complexes with randomly substituted cyclodextrins, as well as for estimating their dependence on pH. This work proposes solutions on how to effectively use this knowledge, which is especially important for researchers who will deal with this topic in the future. This review also presents other applications of ML in relation to CD complexes, including the prediction of physicochemical properties of CD complexes, the development of analytical methods based on complexation with CDs, and the optimisation of experimental conditions for the preparation of the complexes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17671098402发布了新的文献求助10
1秒前
3秒前
不配.应助波哥采纳,获得10
3秒前
糊涂的芒果应助arisw采纳,获得10
3秒前
bread发布了新的文献求助10
6秒前
扎心发布了新的文献求助10
10秒前
米粒之珠亦放光华完成签到,获得积分20
11秒前
12秒前
14秒前
科研通AI2S应助bread采纳,获得10
16秒前
16秒前
青龙大帝发布了新的文献求助10
16秒前
灰色与青完成签到,获得积分10
17秒前
Chemis锌醛完成签到,获得积分20
18秒前
19秒前
上官若男应助林海采纳,获得10
19秒前
FashionBoy应助DE2022采纳,获得10
20秒前
22秒前
小帕菜完成签到,获得积分10
26秒前
AAAAA完成签到 ,获得积分10
26秒前
28秒前
28秒前
bkagyin应助科研通管家采纳,获得10
29秒前
独特觅翠应助科研通管家采纳,获得20
29秒前
思源应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
李爱国应助科研通管家采纳,获得30
29秒前
8R60d8应助科研通管家采纳,获得10
29秒前
8R60d8应助科研通管家采纳,获得10
29秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
Jasper应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
英姑应助科研通管家采纳,获得10
29秒前
顾九思完成签到,获得积分10
33秒前
33秒前
wxl完成签到,获得积分10
34秒前
DE2022发布了新的文献求助10
35秒前
35秒前
CipherSage应助热心电脑采纳,获得10
35秒前
ZOEY发布了新的文献求助10
36秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212316
求助须知:如何正确求助?哪些是违规求助? 2861197
关于积分的说明 8127562
捐赠科研通 2527165
什么是DOI,文献DOI怎么找? 1360756
科研通“疑难数据库(出版商)”最低求助积分说明 643322
邀请新用户注册赠送积分活动 615658