Prostate cancer risk assessment and avoidance of prostate biopsies using fully automatic deep learning in prostate MRI: comparison to PI-RADS and integration with clinical data in nomograms

医学 前列腺癌 前列腺 列线图 放射科 活检 磁共振成像 多参数磁共振成像 前列腺活检 核医学 癌症 肿瘤科 内科学
作者
Adrian Schrader,Nils Netzer,Thomas Hielscher,Magdalena Görtz,Kevin Sun Zhang,Viktoria Schütz,Albrecht Stenzinger,Markus Hohenfellner,Heinz‐Peter Schlemmer,David Bonekamp
出处
期刊:European Radiology [Springer Nature]
卷期号:34 (12): 7909-7920 被引量:2
标识
DOI:10.1007/s00330-024-10818-0
摘要

Abstract Objectives Risk calculators (RCs) improve patient selection for prostate biopsy with clinical/demographic information, recently with prostate MRI using the prostate imaging reporting and data system (PI-RADS). Fully-automated deep learning (DL) analyzes MRI data independently, and has been shown to be on par with clinical radiologists, but has yet to be incorporated into RCs. The goal of this study is to re-assess the diagnostic quality of RCs, the impact of replacing PI-RADS with DL predictions, and potential performance gains by adding DL besides PI-RADS. Material and methods One thousand six hundred twenty-seven consecutive examinations from 2014 to 2021 were included in this retrospective single-center study, including 517 exams withheld for RC testing. Board-certified radiologists assessed PI-RADS during clinical routine, then systematic and MRI/Ultrasound-fusion biopsies provided histopathological ground truth for significant prostate cancer (sPC). nnUNet-based DL ensembles were trained on biparametric MRI predicting the presence of sPC lesions (UNet-probability) and a PI-RADS-analogous five-point scale (UNet-Likert). Previously published RCs were validated as is; with PI-RADS substituted by UNet-Likert (UNet-Likert-substituted RC); and with both UNet-probability and PI-RADS (UNet-probability-extended RC). Together with a newly fitted RC using clinical data, PI-RADS and UNet-probability, existing RCs were compared by receiver-operating characteristics, calibration, and decision-curve analysis. Results Diagnostic performance remained stable for UNet-Likert-substituted RCs. DL contained complementary diagnostic information to PI-RADS. The newly-fitted RC spared 49% [252/517] of biopsies while maintaining the negative predictive value (94%), compared to PI-RADS ≥ 4 cut-off which spared 37% [190/517] ( p < 0.001). Conclusions Incorporating DL as an independent diagnostic marker for RCs can improve patient stratification before biopsy, as there is complementary information in DL features and clinical PI-RADS assessment. Clinical relevance statement For patients with positive prostate screening results, a comprehensive diagnostic workup, including prostate MRI, DL analysis, and individual classification using nomograms can identify patients with minimal prostate cancer risk, as they benefit less from the more invasive biopsy procedure. Key Points The current MRI-based nomograms result in many negative prostate biopsies. The addition of DL to nomograms with clinical data and PI-RADS improves patient stratification before biopsy . Fully automatic DL can be substituted for PI-RADS without sacrificing the quality of nomogram predictions . Prostate nomograms show cancer detection ability comparable to previous validation studies while being suitable for the addition of DL analysis .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
甜甜妙芙发布了新的文献求助10
1秒前
Catalysis123完成签到,获得积分10
1秒前
世外完成签到,获得积分10
1秒前
Tong完成签到,获得积分10
2秒前
WANG完成签到,获得积分10
3秒前
3秒前
3秒前
大力飞雪发布了新的文献求助30
4秒前
4秒前
落后易绿完成签到,获得积分20
5秒前
xingxing完成签到,获得积分10
5秒前
green完成签到,获得积分10
5秒前
binbin完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
二维世界是个圆完成签到,获得积分10
7秒前
7秒前
科研小豆发布了新的文献求助10
7秒前
科目三应助zcq2425采纳,获得10
8秒前
小林太郎应助断绝的采纳,获得10
8秒前
wanglu完成签到,获得积分10
9秒前
9秒前
大力捕完成签到,获得积分10
10秒前
Beth完成签到,获得积分10
10秒前
老孙完成签到,获得积分10
10秒前
MQ&FF完成签到,获得积分0
10秒前
辉辉发布了新的文献求助10
11秒前
多喝温水完成签到 ,获得积分10
11秒前
11秒前
12秒前
冲刺的仙人掌完成签到 ,获得积分10
12秒前
12秒前
12秒前
王青完成签到,获得积分20
12秒前
Gruzz发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522709
求助须知:如何正确求助?哪些是违规求助? 3103705
关于积分的说明 9266832
捐赠科研通 2800287
什么是DOI,文献DOI怎么找? 1536901
邀请新用户注册赠送积分活动 715181
科研通“疑难数据库(出版商)”最低求助积分说明 708660