Evaluating the quality of home care in community health service centres: A machine learning approach

随机森林 杠杆(统计) 逻辑回归 分级(工程) 卷积神经网络 护理部 服务质量 质量(理念) 家庭健康 服务(商务) 医学 医疗保健 计算机科学 机器学习 业务 工程类 营销 哲学 认识论 土木工程 经济增长 经济
作者
Qiujie Xia,Qiyuan Huang,Jingjie Li,Yue Xu,Ge Song,Xiao Zhang,Mei Li,Dehong Yu,Xianping Tang,Youbing Xia
出处
期刊:Journal of Advanced Nursing [Wiley]
被引量:1
标识
DOI:10.1111/jan.16234
摘要

Abstract Aims The aim of the study is to develop a model using a machine learning approach that can effectively identify the quality of home care in communities. Design A cross‐sectional design. Methods In this study, we evaluated the quality of home care in 170 community health service centres between October 2022 and February 2023. The Home Care Service Quality Questionnaire was used to collect information on home care structure, process and outcome quality. Then, an intelligent and comprehensive evaluation model was developed using a convolutional neural network, and its performance was compared with random forest and logistic regression models through various performance indicators. Results The convolutional neural network model was built upon seven variables, which encompassed the qualification of home nursing staff, developing and practicing emergency plan to cope with different emergency rescues in home environment, being equipped with medication and supplies for first aid according to specific situations, assessing nutrition condition of home patients, allocation of the number of home nursing staff, cases of new pressure ulcers and patient satisfaction rate. Remarkably, the convolutional neural network model demonstrated superior performance, outperforming both the random forest and regression models. Conclusion The successful development and application of the convolutional neural network model highlight its ability to leverage data from community health service centres for rapid and accurate grading of home care quality. This research points the way to home care quality improvement. Impact The model proposed in this study, coupled with the aforementioned factors, is expected to enhance the accuracy and efficiency of a comprehensive evaluation of home care quality. It will also help managers to take purposeful measures to improve the quality of home care. Reporting Method The reporting of this study (Observational, cross‐sectional study) conforms to the STROBE statement. Patient or Public Contribution No patient or public contribution. Implications for the Profession and/or Patient Care The application of this model has the potential to contribute to the advancement of high‐quality home care, particularly in lower‐middle‐income communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元问晴完成签到,获得积分10
2秒前
傲娇文博发布了新的文献求助10
4秒前
完美冷安完成签到,获得积分10
4秒前
6秒前
8秒前
10秒前
乐乐应助suwan采纳,获得10
12秒前
充电宝应助追寻易云采纳,获得10
15秒前
吴雪完成签到 ,获得积分10
15秒前
大喇叭啦啦啦完成签到,获得积分10
17秒前
愉快问枫应助傲娇文博采纳,获得10
17秒前
17秒前
季夏完成签到,获得积分10
17秒前
汪汪发布了新的文献求助10
18秒前
lee完成签到,获得积分20
18秒前
19秒前
科研通AI2S应助LX采纳,获得10
19秒前
左丘孤容完成签到,获得积分10
21秒前
英勇绮南完成签到,获得积分10
22秒前
星寒完成签到 ,获得积分10
22秒前
suwan发布了新的文献求助10
22秒前
LNE完成签到,获得积分10
23秒前
23秒前
李健应助爱上好采纳,获得10
24秒前
科研通AI2S应助cookie采纳,获得10
24秒前
33关闭了33文献求助
26秒前
胡图图发布了新的文献求助10
26秒前
比特币麻袋装完成签到,获得积分10
26秒前
顾矜应助丰硕采纳,获得10
27秒前
现代小笼包完成签到,获得积分20
27秒前
咩咩洞完成签到,获得积分10
27秒前
29秒前
29秒前
29秒前
30秒前
ashore发布了新的文献求助10
31秒前
107发布了新的文献求助10
32秒前
wuyuan9588完成签到 ,获得积分10
34秒前
靓丽翩跹发布了新的文献求助10
35秒前
爆米花应助生动日记本采纳,获得10
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259935
求助须知:如何正确求助?哪些是违规求助? 2901390
关于积分的说明 8315167
捐赠科研通 2570900
什么是DOI,文献DOI怎么找? 1396729
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631952