Evaluating the quality of home care in community health service centres: A machine learning approach

随机森林 杠杆(统计) 逻辑回归 分级(工程) 卷积神经网络 护理部 服务质量 质量(理念) 家庭健康 服务(商务) 医学 医疗保健 计算机科学 机器学习 业务 工程类 营销 哲学 认识论 土木工程 经济增长 经济
作者
Qiujie Xia,Qiyuan Huang,Jingjie Li,Yue Xu,Ge Song,Xiao Zhang,Mei Li,Dehong Yu,Xianping Tang,Youbing Xia
出处
期刊:Journal of Advanced Nursing [Wiley]
被引量:1
标识
DOI:10.1111/jan.16234
摘要

Abstract Aims The aim of the study is to develop a model using a machine learning approach that can effectively identify the quality of home care in communities. Design A cross‐sectional design. Methods In this study, we evaluated the quality of home care in 170 community health service centres between October 2022 and February 2023. The Home Care Service Quality Questionnaire was used to collect information on home care structure, process and outcome quality. Then, an intelligent and comprehensive evaluation model was developed using a convolutional neural network, and its performance was compared with random forest and logistic regression models through various performance indicators. Results The convolutional neural network model was built upon seven variables, which encompassed the qualification of home nursing staff, developing and practicing emergency plan to cope with different emergency rescues in home environment, being equipped with medication and supplies for first aid according to specific situations, assessing nutrition condition of home patients, allocation of the number of home nursing staff, cases of new pressure ulcers and patient satisfaction rate. Remarkably, the convolutional neural network model demonstrated superior performance, outperforming both the random forest and regression models. Conclusion The successful development and application of the convolutional neural network model highlight its ability to leverage data from community health service centres for rapid and accurate grading of home care quality. This research points the way to home care quality improvement. Impact The model proposed in this study, coupled with the aforementioned factors, is expected to enhance the accuracy and efficiency of a comprehensive evaluation of home care quality. It will also help managers to take purposeful measures to improve the quality of home care. Reporting Method The reporting of this study (Observational, cross‐sectional study) conforms to the STROBE statement. Patient or Public Contribution No patient or public contribution. Implications for the Profession and/or Patient Care The application of this model has the potential to contribute to the advancement of high‐quality home care, particularly in lower‐middle‐income communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬味电子对儿完成签到,获得积分10
1秒前
YuenYuen发布了新的文献求助10
1秒前
田欣发布了新的文献求助10
1秒前
爆米花应助111采纳,获得10
2秒前
Hello应助chouchou采纳,获得10
2秒前
zhangqin发布了新的文献求助10
3秒前
英姑应助罐装采纳,获得10
4秒前
fd163c应助狗蛋不会写论文采纳,获得10
5秒前
dg g g g g g g完成签到,获得积分10
7秒前
9秒前
小二郎应助虚拟的怀绿采纳,获得10
12秒前
jiwn完成签到,获得积分10
13秒前
千里江山一只蝇完成签到,获得积分10
13秒前
14秒前
18秒前
CXC完成签到,获得积分10
19秒前
李爱国应助zhangqin采纳,获得30
19秒前
fafafasci完成签到,获得积分10
19秒前
香蕉觅云应助sdl采纳,获得10
21秒前
风过无痕zj完成签到,获得积分10
23秒前
23秒前
23秒前
24秒前
云飞扬给云飞扬的求助进行了留言
24秒前
27秒前
高大凌寒应助angelinazh采纳,获得200
28秒前
28秒前
高兴荔枝完成签到,获得积分10
29秒前
30秒前
砥砺应助Lakebaikal采纳,获得10
30秒前
pegasus0802完成签到,获得积分10
31秒前
yi发布了新的文献求助10
31秒前
狗蛋不会写论文完成签到,获得积分10
32秒前
虚拟的怀绿完成签到,获得积分10
34秒前
34秒前
查丽完成签到 ,获得积分10
34秒前
香蕉觅云应助wdl采纳,获得10
35秒前
35秒前
香蕉觅云应助的微博采纳,获得10
36秒前
liuqingyu完成签到,获得积分10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730563
求助须知:如何正确求助?哪些是违规求助? 3275178
关于积分的说明 9991341
捐赠科研通 2990805
什么是DOI,文献DOI怎么找? 1641233
邀请新用户注册赠送积分活动 779636
科研通“疑难数据库(出版商)”最低求助积分说明 748331