伤口愈合
免疫系统
乳酸菌
微生态学
微生物学
炎症
生物
细菌
免疫学
遗传学
作者
Xiaopeng Yang,Tingting Che,Shasha Tian,Yuanyuan Zhang,Zheng Yin,Yufei Zhang,Xinge Zhang,Zhongming Wu
标识
DOI:10.1002/adhm.202400856
摘要
Dysregulated skin microbiota and compromised immune responses are the major etiological factors for non-healing diabetic wounds. Current antibacterial strategies fail to orchestrate immune responses and indiscriminately eradicate bacteria at the wound site, exacerbating the imbalance of microbiota. Drawing inspiration from the beneficial impacts that probiotics possess on microbiota, a living microecological hydrogel containing Lactobacillus plantarum and fructooligosaccharide (LP/FOS@Gel) is formulated to remodel dysregulated skin microbiota and reinstate compromised immune responses, cultivating a conducive environment for optimal wound healing. LP/FOS@Gel acts as an "evocator," skillfully integrating the skin microecology, promoting the proliferation of Lactobacillus, Ralstonia, Muribaculum, Bacillus, and Allobaculum, while eradicating colonized pathogenic bacteria. Concurrently, LP/FOS@Gel continuously generates lactic acid to elicit a reparative macrophage response and impede the activation of the nuclear factor kappa-B pathway, effectively alleviating inflammation. As an intelligent microecological system, LP/FOS@Gel reinstates the skin's sovereignty during the healing process and effectively orchestrates the harmonious dialogue between the host immune system and microorganisms, thereby fostering the healing of diabetic infectious wounds. These remarkable attributes render LP/FOS@Gel highly advantageous for pragmatic clinical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI