Deep Learning Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT

医学 对比度(视觉) 放射科 医学物理学 人工智能 计算机科学
作者
Chenchen Dai,Ying Xiong,Pingyi Zhu,Linpeng Yao,Jinglai Lin,Jiaxi Yao,X Zhang,Risheng Huang,Run Wang,Jun Xian Hou,Kang Wang,Zhang Shi,Feng Chen,Jianming Guo,Mengsu Zeng,Jianjun Zhou,Shuo Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:6
标识
DOI:10.1148/radiol.232178
摘要

Background Accurate characterization of suspicious small renal masses is crucial for optimized management. Deep learning (DL) algorithms may assist with this effort. Purpose To develop and validate a DL algorithm for identifying benign small renal masses at contrast-enhanced multiphase CT. Materials and Methods Surgically resected renal masses measuring 3 cm or less in diameter at contrast-enhanced CT were included. The DL algorithm was developed by using retrospective data from one hospital between 2009 and 2021, with patients randomly allocated in a training and internal test set ratio of 8:2. Between 2013 and 2021, external testing was performed on data from five independent hospitals. A prospective test set was obtained between 2021 and 2022 from one hospital. Algorithm performance was evaluated by using the area under the receiver operating characteristic curve (AUC) and compared with the results of seven clinicians using the DeLong test. Results A total of 1703 patients (mean age, 56 years ± 12 [SD]; 619 female) with a single renal mass per patient were evaluated. The retrospective data set included 1063 lesions (874 in training set, 189 internal test set); the multicenter external test set included 537 lesions (12.3%, 66 benign) with 89 subcentimeter (≤1 cm) lesions (16.6%); and the prospective test set included 103 lesions (13.6%, 14 benign) with 20 (19.4%) subcentimeter lesions. The DL algorithm performance was comparable with that of urological radiologists: for the external test set, AUC was 0.80 (95% CI: 0.75, 0.85) versus 0.84 (95% CI: 0.78, 0.88) (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三七二一完成签到,获得积分10
刚刚
1秒前
大方的寒烟完成签到,获得积分10
2秒前
4秒前
橘寄完成签到,获得积分10
4秒前
请叫我风吹麦浪应助mito采纳,获得10
5秒前
Smallhei完成签到,获得积分10
5秒前
6秒前
111111111完成签到,获得积分20
6秒前
7秒前
阿牛完成签到,获得积分20
8秒前
9秒前
111111111发布了新的文献求助10
10秒前
10秒前
10秒前
龙华之士完成签到,获得积分10
11秒前
机智的青槐完成签到 ,获得积分10
12秒前
阿牛发布了新的文献求助10
12秒前
虚拟的凡波完成签到,获得积分10
12秒前
pinging应助离线采纳,获得10
12秒前
在水一方应助甜甜晓露采纳,获得10
12秒前
spurs17完成签到,获得积分10
13秒前
黎乐乐完成签到 ,获得积分10
13秒前
miao完成签到,获得积分10
13秒前
14秒前
小郭完成签到 ,获得积分10
14秒前
龙华之士发布了新的文献求助10
14秒前
smile完成签到,获得积分10
14秒前
斯文败类应助动听导师采纳,获得10
15秒前
15秒前
复杂曼梅发布了新的文献求助10
15秒前
迷糊完成签到,获得积分10
16秒前
16秒前
汉堡包应助Rrr采纳,获得10
17秒前
新的心跳发布了新的文献求助10
17秒前
NN应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
共享精神应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得30
19秒前
shouyu29应助科研通管家采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808