Deep Learning Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT

医学 对比度(视觉) 放射科 医学物理学 人工智能 计算机科学
作者
Chenchen Dai,Ying Xiong,Pingyi Zhu,Linpeng Yao,Jinglai Lin,Jiaxi Yao,X Zhang,Risheng Huang,Run Wang,Jun Xian Hou,Kang Wang,Zhang Shi,Feng Chen,Jianming Guo,Mengsu Zeng,Jianjun Zhou,Shuo Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:12
标识
DOI:10.1148/radiol.232178
摘要

Background Accurate characterization of suspicious small renal masses is crucial for optimized management. Deep learning (DL) algorithms may assist with this effort. Purpose To develop and validate a DL algorithm for identifying benign small renal masses at contrast-enhanced multiphase CT. Materials and Methods Surgically resected renal masses measuring 3 cm or less in diameter at contrast-enhanced CT were included. The DL algorithm was developed by using retrospective data from one hospital between 2009 and 2021, with patients randomly allocated in a training and internal test set ratio of 8:2. Between 2013 and 2021, external testing was performed on data from five independent hospitals. A prospective test set was obtained between 2021 and 2022 from one hospital. Algorithm performance was evaluated by using the area under the receiver operating characteristic curve (AUC) and compared with the results of seven clinicians using the DeLong test. Results A total of 1703 patients (mean age, 56 years ± 12 [SD]; 619 female) with a single renal mass per patient were evaluated. The retrospective data set included 1063 lesions (874 in training set, 189 internal test set); the multicenter external test set included 537 lesions (12.3%, 66 benign) with 89 subcentimeter (≤1 cm) lesions (16.6%); and the prospective test set included 103 lesions (13.6%, 14 benign) with 20 (19.4%) subcentimeter lesions. The DL algorithm performance was comparable with that of urological radiologists: for the external test set, AUC was 0.80 (95% CI: 0.75, 0.85) versus 0.84 (95% CI: 0.78, 0.88) (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活泼代芙发布了新的文献求助10
1秒前
lanrete发布了新的文献求助10
2秒前
希望天下0贩的0应助小谢采纳,获得10
2秒前
Birdy发布了新的文献求助10
2秒前
2秒前
李新悦完成签到,获得积分10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
xz发布了新的文献求助10
2秒前
浮游应助科研通管家采纳,获得10
3秒前
vizi应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得50
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
清秋1001完成签到,获得积分10
4秒前
dongdong完成签到,获得积分10
4秒前
ardejiang发布了新的文献求助10
4秒前
田様应助fengdengjin采纳,获得10
4秒前
4秒前
科研通AI2S应助cc采纳,获得10
5秒前
wangqixin发布了新的文献求助10
5秒前
5秒前
李爱国应助可靠的千愁采纳,获得10
7秒前
7秒前
科研通AI2S应助h31318927采纳,获得10
7秒前
852应助嗯嗯嗯嗯采纳,获得30
7秒前
烟花应助能量球采纳,获得10
7秒前
科研通AI5应助体贴的青烟采纳,获得10
8秒前
地瓜完成签到,获得积分10
8秒前
9秒前
淡定初珍完成签到,获得积分10
10秒前
丽丽呀发布了新的文献求助10
10秒前
清爽身影完成签到,获得积分10
11秒前
11秒前
12秒前
Liyuan完成签到,获得积分10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Handbook of Organizational Communication: An Interdisciplinary Perspective 400
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558607
求助须知:如何正确求助?哪些是违规求助? 3985544
关于积分的说明 12339263
捐赠科研通 3656005
什么是DOI,文献DOI怎么找? 2014096
邀请新用户注册赠送积分活动 1048954
科研通“疑难数据库(出版商)”最低求助积分说明 937316