Deep Learning Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT

医学 对比度(视觉) 放射科 医学物理学 人工智能 计算机科学
作者
Chenchen Dai,Ying Xiong,Pingyi Zhu,Linpeng Yao,Jinglai Lin,Jiaxi Yao,X Zhang,Risheng Huang,Run Wang,Jun Xian Hou,Kang Wang,Zhang Shi,Feng Chen,Jianming Guo,Mengsu Zeng,Jianjun Zhou,Shuo Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:12
标识
DOI:10.1148/radiol.232178
摘要

Background Accurate characterization of suspicious small renal masses is crucial for optimized management. Deep learning (DL) algorithms may assist with this effort. Purpose To develop and validate a DL algorithm for identifying benign small renal masses at contrast-enhanced multiphase CT. Materials and Methods Surgically resected renal masses measuring 3 cm or less in diameter at contrast-enhanced CT were included. The DL algorithm was developed by using retrospective data from one hospital between 2009 and 2021, with patients randomly allocated in a training and internal test set ratio of 8:2. Between 2013 and 2021, external testing was performed on data from five independent hospitals. A prospective test set was obtained between 2021 and 2022 from one hospital. Algorithm performance was evaluated by using the area under the receiver operating characteristic curve (AUC) and compared with the results of seven clinicians using the DeLong test. Results A total of 1703 patients (mean age, 56 years ± 12 [SD]; 619 female) with a single renal mass per patient were evaluated. The retrospective data set included 1063 lesions (874 in training set, 189 internal test set); the multicenter external test set included 537 lesions (12.3%, 66 benign) with 89 subcentimeter (≤1 cm) lesions (16.6%); and the prospective test set included 103 lesions (13.6%, 14 benign) with 20 (19.4%) subcentimeter lesions. The DL algorithm performance was comparable with that of urological radiologists: for the external test set, AUC was 0.80 (95% CI: 0.75, 0.85) versus 0.84 (95% CI: 0.78, 0.88) (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lily发布了新的文献求助10
刚刚
刚刚
科研通AI6应助feixue采纳,获得10
1秒前
终梦发布了新的文献求助10
1秒前
hardtime完成签到,获得积分20
1秒前
kkk完成签到,获得积分10
1秒前
可乐喝九瓶完成签到,获得积分10
2秒前
泡芙发布了新的文献求助10
2秒前
科研战士完成签到,获得积分10
2秒前
华仔应助GongFei采纳,获得10
3秒前
3秒前
BuMAMAHAHA完成签到,获得积分10
3秒前
科研通AI5应助Queena采纳,获得10
4秒前
4秒前
kuaikuai发布了新的文献求助30
4秒前
5秒前
5秒前
优美的书雪完成签到,获得积分20
5秒前
5秒前
Alex应助白桃枝采纳,获得20
6秒前
终梦完成签到,获得积分10
6秒前
6秒前
杨多望发布了新的文献求助10
6秒前
CC完成签到 ,获得积分10
8秒前
fzzf发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
晓薇发布了新的文献求助10
9秒前
顾矜应助kuaikuai采纳,获得10
9秒前
我是老大应助赵珺采纳,获得10
9秒前
科研通AI6应助ni采纳,获得10
9秒前
abner完成签到,获得积分10
11秒前
lwt完成签到,获得积分10
11秒前
Ningning发布了新的文献求助10
11秒前
Yiran发布了新的文献求助10
11秒前
12秒前
哈温完成签到,获得积分10
12秒前
12秒前
sskr完成签到,获得积分10
12秒前
psj完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4884272
求助须知:如何正确求助?哪些是违规求助? 4169600
关于积分的说明 12938186
捐赠科研通 3930023
什么是DOI,文献DOI怎么找? 2156406
邀请新用户注册赠送积分活动 1174785
关于科研通互助平台的介绍 1079562