Deep Learning Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT

医学 对比度(视觉) 放射科 医学物理学 人工智能 计算机科学
作者
Chenchen Dai,Ying Xiong,Pingyi Zhu,Linpeng Yao,Jinglai Lin,Jiaxi Yao,X Zhang,Risheng Huang,Run Wang,Jun Xian Hou,Kang Wang,Zhang Shi,Feng Chen,Jianming Guo,Mengsu Zeng,Jianjun Zhou,Shuo Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:12
标识
DOI:10.1148/radiol.232178
摘要

Background Accurate characterization of suspicious small renal masses is crucial for optimized management. Deep learning (DL) algorithms may assist with this effort. Purpose To develop and validate a DL algorithm for identifying benign small renal masses at contrast-enhanced multiphase CT. Materials and Methods Surgically resected renal masses measuring 3 cm or less in diameter at contrast-enhanced CT were included. The DL algorithm was developed by using retrospective data from one hospital between 2009 and 2021, with patients randomly allocated in a training and internal test set ratio of 8:2. Between 2013 and 2021, external testing was performed on data from five independent hospitals. A prospective test set was obtained between 2021 and 2022 from one hospital. Algorithm performance was evaluated by using the area under the receiver operating characteristic curve (AUC) and compared with the results of seven clinicians using the DeLong test. Results A total of 1703 patients (mean age, 56 years ± 12 [SD]; 619 female) with a single renal mass per patient were evaluated. The retrospective data set included 1063 lesions (874 in training set, 189 internal test set); the multicenter external test set included 537 lesions (12.3%, 66 benign) with 89 subcentimeter (≤1 cm) lesions (16.6%); and the prospective test set included 103 lesions (13.6%, 14 benign) with 20 (19.4%) subcentimeter lesions. The DL algorithm performance was comparable with that of urological radiologists: for the external test set, AUC was 0.80 (95% CI: 0.75, 0.85) versus 0.84 (95% CI: 0.78, 0.88) (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
川荣李奈完成签到 ,获得积分10
1秒前
1秒前
2秒前
李爱国应助11采纳,获得30
2秒前
心灵尔安完成签到 ,获得积分10
2秒前
无花果应助动听的乌冬面采纳,获得10
3秒前
ximei完成签到,获得积分10
4秒前
共享精神应助15966014069采纳,获得30
4秒前
CodeCraft应助妮妮采纳,获得10
4秒前
4秒前
4秒前
zhang发布了新的文献求助10
4秒前
张晗完成签到 ,获得积分20
4秒前
自信书竹发布了新的文献求助10
5秒前
赧然发布了新的文献求助10
5秒前
赫赫完成签到,获得积分10
6秒前
6秒前
滴滴滴发布了新的文献求助10
8秒前
橙子应助Bismarck采纳,获得10
9秒前
10秒前
无情白羊发布了新的文献求助10
11秒前
zwy发布了新的文献求助10
11秒前
搜集达人应助lililili采纳,获得10
12秒前
Wen完成签到,获得积分10
12秒前
12秒前
bzc完成签到,获得积分10
13秒前
wan完成签到,获得积分10
14秒前
大个应助lyyy采纳,获得10
14秒前
bkagyin应助stonedream采纳,获得10
14秒前
zhouzheyu完成签到,获得积分10
14秒前
李浩然完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
腼腆的千雁完成签到,获得积分10
16秒前
16秒前
17秒前
生菜完成签到,获得积分20
17秒前
mouxq发布了新的文献求助10
18秒前
搜集达人应助lelebuaichi采纳,获得10
19秒前
典雅煎蛋完成签到,获得积分10
20秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142850
求助须知:如何正确求助?哪些是违规求助? 4340997
关于积分的说明 13519072
捐赠科研通 4181180
什么是DOI,文献DOI怎么找? 2292757
邀请新用户注册赠送积分活动 1293411
关于科研通互助平台的介绍 1235982