亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT

医学 对比度(视觉) 放射科 医学物理学 人工智能 计算机科学
作者
Chenchen Dai,Ying Xiong,Pingyi Zhu,Linpeng Yao,Jinglai Lin,Jiaxi Yao,X Zhang,Risheng Huang,Run Wang,Jun Xian Hou,Kang Wang,Zhang Shi,Feng Chen,Jianming Guo,Mengsu Zeng,Jianjun Zhou,Shuo Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:12
标识
DOI:10.1148/radiol.232178
摘要

Background Accurate characterization of suspicious small renal masses is crucial for optimized management. Deep learning (DL) algorithms may assist with this effort. Purpose To develop and validate a DL algorithm for identifying benign small renal masses at contrast-enhanced multiphase CT. Materials and Methods Surgically resected renal masses measuring 3 cm or less in diameter at contrast-enhanced CT were included. The DL algorithm was developed by using retrospective data from one hospital between 2009 and 2021, with patients randomly allocated in a training and internal test set ratio of 8:2. Between 2013 and 2021, external testing was performed on data from five independent hospitals. A prospective test set was obtained between 2021 and 2022 from one hospital. Algorithm performance was evaluated by using the area under the receiver operating characteristic curve (AUC) and compared with the results of seven clinicians using the DeLong test. Results A total of 1703 patients (mean age, 56 years ± 12 [SD]; 619 female) with a single renal mass per patient were evaluated. The retrospective data set included 1063 lesions (874 in training set, 189 internal test set); the multicenter external test set included 537 lesions (12.3%, 66 benign) with 89 subcentimeter (≤1 cm) lesions (16.6%); and the prospective test set included 103 lesions (13.6%, 14 benign) with 20 (19.4%) subcentimeter lesions. The DL algorithm performance was comparable with that of urological radiologists: for the external test set, AUC was 0.80 (95% CI: 0.75, 0.85) versus 0.84 (95% CI: 0.78, 0.88) (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eye发布了新的文献求助10
刚刚
2秒前
Jasper应助Zirong采纳,获得10
3秒前
共享精神应助皮崇知采纳,获得10
6秒前
xiaoshuwang完成签到,获得积分10
8秒前
樱桃小贩完成签到,获得积分10
9秒前
牛牛完成签到 ,获得积分10
9秒前
崔洪瑞完成签到,获得积分10
9秒前
CodeCraft应助eye采纳,获得10
11秒前
CodeCraft应助eye采纳,获得30
11秒前
14秒前
16秒前
18秒前
两袖清风完成签到 ,获得积分10
21秒前
皮崇知发布了新的文献求助10
23秒前
lizhaoyu完成签到,获得积分10
37秒前
Y先生应助qcq采纳,获得20
44秒前
49秒前
Bella发布了新的文献求助10
53秒前
yx_cheng应助qcq采纳,获得20
53秒前
karea发布了新的文献求助10
57秒前
58秒前
59秒前
小庄完成签到 ,获得积分10
1分钟前
国色不染尘完成签到,获得积分10
1分钟前
闪闪的谷梦完成签到 ,获得积分10
1分钟前
在水一方应助张绵羊采纳,获得10
1分钟前
1分钟前
gxh66完成签到,获得积分10
1分钟前
青枫发布了新的文献求助30
1分钟前
无花果应助Ni采纳,获得10
1分钟前
1分钟前
爆米花应助孔雪采纳,获得10
1分钟前
1分钟前
1分钟前
脑洞疼应助cccccccc采纳,获得10
1分钟前
1分钟前
Ni发布了新的文献求助10
1分钟前
qcq完成签到,获得积分10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965604
求助须知:如何正确求助?哪些是违规求助? 3510843
关于积分的说明 11155405
捐赠科研通 3245345
什么是DOI,文献DOI怎么找? 1792840
邀请新用户注册赠送积分活动 874118
科研通“疑难数据库(出版商)”最低求助积分说明 804188