Deep Learning Assessment of Small Renal Masses at Contrast-enhanced Multiphase CT

医学 对比度(视觉) 放射科 医学物理学 人工智能 计算机科学
作者
Chenchen Dai,Ying Xiong,Pingyi Zhu,Linpeng Yao,Jinglai Lin,Jiaxi Yao,X Zhang,Risheng Huang,Run Wang,Jun Xian Hou,Kang Wang,Zhang Shi,Feng Chen,Jianming Guo,Mengsu Zeng,Jianjun Zhou,Shuo Wang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (2) 被引量:12
标识
DOI:10.1148/radiol.232178
摘要

Background Accurate characterization of suspicious small renal masses is crucial for optimized management. Deep learning (DL) algorithms may assist with this effort. Purpose To develop and validate a DL algorithm for identifying benign small renal masses at contrast-enhanced multiphase CT. Materials and Methods Surgically resected renal masses measuring 3 cm or less in diameter at contrast-enhanced CT were included. The DL algorithm was developed by using retrospective data from one hospital between 2009 and 2021, with patients randomly allocated in a training and internal test set ratio of 8:2. Between 2013 and 2021, external testing was performed on data from five independent hospitals. A prospective test set was obtained between 2021 and 2022 from one hospital. Algorithm performance was evaluated by using the area under the receiver operating characteristic curve (AUC) and compared with the results of seven clinicians using the DeLong test. Results A total of 1703 patients (mean age, 56 years ± 12 [SD]; 619 female) with a single renal mass per patient were evaluated. The retrospective data set included 1063 lesions (874 in training set, 189 internal test set); the multicenter external test set included 537 lesions (12.3%, 66 benign) with 89 subcentimeter (≤1 cm) lesions (16.6%); and the prospective test set included 103 lesions (13.6%, 14 benign) with 20 (19.4%) subcentimeter lesions. The DL algorithm performance was comparable with that of urological radiologists: for the external test set, AUC was 0.80 (95% CI: 0.75, 0.85) versus 0.84 (95% CI: 0.78, 0.88) (
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杜萌萌完成签到,获得积分10
刚刚
李健应助十一嘞采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
zcl应助科研通管家采纳,获得20
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮生若梦应助科研通管家采纳,获得10
2秒前
浮生若梦应助科研通管家采纳,获得10
2秒前
浮生若梦应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得30
2秒前
3秒前
善学以致用应助康康采纳,获得10
3秒前
王欣茹发布了新的文献求助10
3秒前
海绵宝宝发布了新的文献求助10
4秒前
5秒前
风中黎昕完成签到 ,获得积分10
6秒前
6秒前
6秒前
zhongying发布了新的文献求助10
7秒前
Dr_JennyZ完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
海绵宝宝完成签到,获得积分10
9秒前
11秒前
沧化发布了新的文献求助10
12秒前
12秒前
柳沙鸣发布了新的文献求助10
13秒前
yangjun发布了新的文献求助10
14秒前
十一嘞发布了新的文献求助10
15秒前
织心发布了新的文献求助10
15秒前
逍遥自在完成签到,获得积分10
16秒前
Hui完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914