First Principles Study of Aluminum Doped Polycrystalline Silicon as a Potential Anode Candidate in Li‐ion Batteries

材料科学 阳极 兴奋剂 晶界 纳米技术 工程物理 光电子学 复合材料 电极 物理化学 微观结构 工程类 化学
作者
Sree Harsha Bhimineni,Shu‐Ting Ko,Casey Cornwell,Yantao Xia,Sarah H. Tolbert,Jian Luo,Philippe Sautet
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (34) 被引量:6
标识
DOI:10.1002/aenm.202400924
摘要

Abstract Addressing sustainable energy storage remains crucial for transitioning to renewable sources. While Li‐ion batteries have made significant contributions, enhancing their capacity through alternative materials remains a key challenge. Micro‐sized silicon is a promising anode material due to its tenfold higher theoretical capacity compared to conventional graphite. However, its substantial volumetric expansion during cycling impedes practical application due to mechanical failure and rapid capacity fading. A novel approach is proposed to mitigate this issue by incorporating trace amounts of aluminum into the micro‐sized silicon electrode using ball milling. Density functional theory (DFT) is employed to establish a theoretical framework elucidating how grain boundary sliding, a key mechanism involved in preventing mechanical failure is facilitated by the presence of trace aluminum at grain boundaries. This, in turn, reduces stress accumulation within the material, reducing the likelihood of failure. To validate the theoretical predictions, capacity retention experiments are conducted on undoped and Al‐doped micro‐sized silicon samples. The results demonstrate significantly reduced capacity fading in the doped sample, corroborating the theoretical framework and showcasing the potential of aluminum doping for improved Li‐ion battery performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助陈甜甜采纳,获得10
刚刚
摆烂小鱼鱼完成签到 ,获得积分10
刚刚
Lucas应助韩麒嘉采纳,获得10
刚刚
刚刚
刚刚
1秒前
Niuniu完成签到,获得积分10
1秒前
裴裴驳回了珏晴应助
1秒前
2秒前
2秒前
2秒前
2秒前
Aprilapple完成签到,获得积分10
2秒前
3秒前
song发布了新的文献求助10
3秒前
兴奋的发卡完成签到 ,获得积分10
4秒前
自觉翠安应助qiuxiali123采纳,获得10
4秒前
6秒前
hezhuyou完成签到,获得积分20
6秒前
飞乐扣完成签到 ,获得积分10
6秒前
buno应助屈昭阳采纳,获得10
6秒前
优美的觅珍完成签到,获得积分20
6秒前
冯佳祥发布了新的文献求助10
6秒前
aa发布了新的文献求助10
6秒前
852应助一只肥牛采纳,获得10
7秒前
lewis17发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
伯赏夜南发布了新的文献求助10
7秒前
orixero应助Niuniu采纳,获得10
7秒前
雪雪子完成签到,获得积分10
8秒前
8秒前
8秒前
胖狗完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
Owen应助edtaa采纳,获得10
10秒前
万能图书馆应助orange采纳,获得10
11秒前
Yu完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836