MRI-Based Prediction of Clinical Improvement Following Ventricular Shunt Placement for Normal Pressure Hydrocephalus (NPH): Development and Evaluation of an Integrated Multi-Sequence Machine Learning Algorithm

医学 常压脑积水 分流(医疗) 脑积水 序列(生物学) 算法 放射科 外科 内科学 计算机科学 疾病 遗传学 生物 痴呆
作者
Owen P. Leary,Zhusi Zhong,Lulu Bi,Zhicheng Jiao,Yuwei Dai,Kevin Ma,Shanzeh Sayied,Daniel Kargilis,Maliha Imami,Linmei Zhao,Xue Feng,Gerald J Riccardello,Scott Collins,Konstantina Svokos,Abhay Moghekar,Li Yang,Harrison X. Bai,Petra M. Klinge,Jerrold L. Boxerman
出处
期刊:American Journal of Neuroradiology [American Society of Neuroradiology]
标识
DOI:10.3174/ajnr.a8372
摘要

ABSTRACT

BACKGROUND AND PURPOSE:

Symptoms of normal pressure hydrocephalus (NPH) are sometimes refractory to shunt placement, with limited ability to predict improvement for individual patients. We evaluated an MRI-based artificial intelligence method to predict post-shunt NPH symptom improvement.

MATERIALS AND METHODS:

NPH patients who underwent magnetic resonance imaging (MRI) prior to shunt placement at a single center (2014–2021) were identified. Twelve-month post-shunt improvement in modified Rankin Scale (mRS), incontinence, gait, and cognition were retrospectively abstracted from clinical documentation. 3D deep residual neural networks were built on skull stripped T2-weighted and fluid attenuated inversion recovery (FLAIR) images. Predictions based on both sequences were fused by additional network layers. Patients from 2014–2019 were used for parameter optimization, while those from 2020–2021 were used for testing. Models were validated on an external validation dataset from a second institution (n=33).

RESULTS:

Of 249 patients, n=201 and n=185 were included in the T2-based and FLAIR-based models according to imaging availability. The combination of T2-weighted and FLAIR sequences offered the best performance in mRS and gait improvement predictions relative to models trained on imaging acquired using only one sequence, with AUROC values of 0.7395 [0.5765–0.9024] for mRS and 0.8816 [0.8030–0.9602] for gait. For urinary incontinence and cognition, combined model performances on predicting outcomes were similar to FLAIR-only performance, with AUROC values of 0.7874 [0.6845–0.8903] and 0.7230 [0.5600–0.8859].

CONCLUSIONS:

Application of a combined algorithm using both T2-weighted and FLAIR sequences offered the best image-based prediction of post-shunt symptom improvement, particularly for gait and overall function in terms of mRS. ABBREVIATIONS: NPH = normal pressure hydrocephalus; iNPH = idiopathic NPH; sNPH = secondary NPH; AI = artificial intelligence; ML = machine learning; CSF = cerebrospinal fluid; AUROC = area under the receiver operating characteristic; FLAIR = fluid attenuated inversion recovery; BMI = body mass index; CCI = Charlson Comorbidity Index; SD = standard deviation; IQR = interquartile range
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助xxcdnc采纳,获得10
1秒前
1秒前
善学以致用应助蔚蓝采纳,获得10
2秒前
orixero应助mm采纳,获得10
2秒前
SciGPT应助dashuaib采纳,获得10
2秒前
back you up完成签到 ,获得积分0
2秒前
11完成签到,获得积分10
3秒前
Hhhhh完成签到,获得积分10
4秒前
5秒前
无限达完成签到,获得积分10
5秒前
幽默的凡完成签到,获得积分10
5秒前
tian完成签到 ,获得积分10
5秒前
DarrenVan发布了新的文献求助10
5秒前
昏睡的蟠桃应助kyt_tt采纳,获得30
6秒前
彭于彦祖应助Siliang采纳,获得10
6秒前
Shoujiang完成签到 ,获得积分10
6秒前
Ava应助伯赏满天采纳,获得10
6秒前
大耳朵发布了新的文献求助10
6秒前
luogan完成签到,获得积分10
6秒前
ZCY发布了新的文献求助20
7秒前
zl完成签到,获得积分10
7秒前
颛颛完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
呆鹅喵喵发布了新的文献求助10
9秒前
Jc完成签到 ,获得积分10
9秒前
哈哈哈发布了新的文献求助10
9秒前
英姑应助zzrg采纳,获得10
10秒前
小蘑菇应助cmr采纳,获得10
10秒前
10秒前
咔什么嚓完成签到,获得积分10
11秒前
11秒前
11秒前
DarrenVan完成签到,获得积分10
11秒前
11秒前
11秒前
紫轩完成签到,获得积分10
12秒前
努力的学发布了新的文献求助10
13秒前
祝愿发布了新的文献求助10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733849
求助须知:如何正确求助?哪些是违规求助? 3278067
关于积分的说明 10006761
捐赠科研通 2994206
什么是DOI,文献DOI怎么找? 1642969
邀请新用户注册赠送积分活动 780752
科研通“疑难数据库(出版商)”最低求助积分说明 749006