Robust pressure prediction of oil and gas pipeline networks based on equipment embedding neural network

管道(软件) 人工神经网络 石油工程 计算机科学 嵌入 环境科学 人工智能 工程类 操作系统
作者
Weixin Jiang,Zong-ze Li,Qing Yuan,Junhua Gong,Bo Yu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (4)
标识
DOI:10.1063/5.0196920
摘要

Currently, extensive pipeline networks are developed in response to the demands of the oil and gas industry. The accurate estimation of the hydraulic condition of pipeline networks holds significant importance in the fields of pipeline design and safety management. Nevertheless, predicting the pressure of oil and gas pipeline networks with different equipment and structures remains challenging. To meet this challenge, a novel pressure prediction model for the oil and gas pipeline networks based on the equipment embedding neural network (EENN) is proposed in this study. The proposed model embeds different equipment models into the neural network model. The neural network in this model is used to focus on learning the connection characteristics of the pipeline network to achieve higher prediction accuracy. The present study first explores different embedding combinations of the EENN model to estimate the pressure in an oil pipeline network system that involves a non-isothermal batch transportation process. Then, the trained model is applied to predict the pressure in a gas pipeline network. The optimal EENN exhibits an average prediction error of 18.5% for oil pipelines and 0.36% for gas pipelines, which is lower than 20.8% and 3.57% under the neural network. The findings of this study demonstrate the efficacy of the proposed EENN in accurately forecasting pressures in diverse oil and gas pipeline networks by reducing the complexity of the learning process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gean发布了新的文献求助10
刚刚
刚刚
星辰大海应助Minguk采纳,获得10
1秒前
Zoe完成签到,获得积分10
2秒前
慎二发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
科目三应助gean采纳,获得10
3秒前
fc小肥杨完成签到,获得积分10
3秒前
3秒前
小雷要学习完成签到,获得积分10
3秒前
4秒前
Allen224发布了新的文献求助10
4秒前
5秒前
仔仔仔平完成签到,获得积分10
5秒前
6秒前
7秒前
自信安南完成签到,获得积分10
7秒前
GIANTim完成签到,获得积分10
7秒前
抹茶牛奶配布丁完成签到 ,获得积分10
7秒前
二十八画生完成签到 ,获得积分10
7秒前
1b关闭了1b文献求助
8秒前
8秒前
无医发布了新的文献求助10
8秒前
9秒前
orixero应助缓慢修杰采纳,获得10
9秒前
SCIAI应助bpg28采纳,获得10
9秒前
9秒前
9秒前
刘思琪完成签到,获得积分10
10秒前
zhang狗子完成签到,获得积分20
11秒前
ChenYI发布了新的文献求助10
11秒前
11秒前
wowo完成签到,获得积分10
12秒前
nunu发布了新的文献求助10
12秒前
12秒前
13秒前
Chara0521发布了新的文献求助10
13秒前
胡航航发布了新的文献求助10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970287
求助须知:如何正确求助?哪些是违规求助? 3515034
关于积分的说明 11176923
捐赠科研通 3250301
什么是DOI,文献DOI怎么找? 1795244
邀请新用户注册赠送积分活动 875732
科研通“疑难数据库(出版商)”最低求助积分说明 805039