自噬
安普克
PI3K/AKT/mTOR通路
细胞凋亡
细胞生物学
活力测定
生物
癌症研究
细胞生长
下调和上调
信号转导
化学
蛋白激酶A
磷酸化
生物化学
基因
作者
Dan Luo,Fang He,Jingyun Liu,Xueting Dong,Mengying Fang,Yuling Liang,Mengqin Chen,Xuemei Gui,Wenjun Wang,Li Zeng,Xianming Fan,Qibiao Wu
标识
DOI:10.1016/j.biopha.2024.116614
摘要
Pseudolaric acid B (PAB), an acid isolated from the roots of Pseudolarix kaempferi gorden, has shown antitumour effects through multiple mechanisms of action. The objective of this study was to investigate the anticancer effect of PAB on non-small cell lung cancer (NSCLC) and its underlying mechanism. In our experiments, we observed that PAB decreased cell viability, inhibited colony formation, induced cell cycle arrest, impeded scratch healing, and increased apoptosis in H1975 and H1650 cells. Additionally, PAB treatment enhanced the fluorescence intensity of MDC staining in NSCLC cells, upregulated the protein expression of microtubule-associated protein light chain 3 II (LC3 II), and downregulated the expression of sequestosome 1 (SQSTM1/P62). Combined treatment with PAB and chloroquine (CQ) increased the protein expression levels of LC3 II and P62 while decreasing the apoptosis of H1975 and H1650 cells. Moreover, treatment with PAB led to significant mTOR inhibition and AMPK activation. PAB combined with compound C (CC) inhibited autophagy and apoptosis. Furthermore, PAB treatment increased intracellular reactive oxygen species (ROS) levels in NSCLC cells, which correlated with the modulation of the AMPK/mTOR signalling pathway and was associated with autophagy and apoptosis. Finally, we validated the antitumour growth activity and mechanism of PAB in vivo using athymic nude mice bearing H1975 tumour cells. In conclusion, our findings suggest that PAB can induce apoptosis and autophagic cell death in NSCLC through the ROS-triggered AMPK/mTOR signalling pathway, making it a promising candidate for future NSCLC treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI