A CNN-BiLSTM-Attention approach for EHA degradation prediction based on time-series generative adversarial network

人工智能 计算机科学 生成语法 生成对抗网络 降级(电信) 系列(地层学) 时间序列 机器学习 对抗制 模式识别(心理学) 深度学习 电信 古生物学 生物
作者
Zhonghai Ma,Yiwen Sun,Hui Ji,Suolan Li,Songlin Nie,Fanglong Yin
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:215: 111443-111443 被引量:14
标识
DOI:10.1016/j.ymssp.2024.111443
摘要

As a representative integrated system for power-by-wire (PBW) systems, Electro-hydrostatic actuator (EHA) has series of advantages such as high power density, compactness, and high efficiency, which is one of the important development directions of future hydraulic system field. However, due to its high integration and high reliability requirements, it is challenging to conduct degradation studies in short period of time with limited data samples. For this type of high integrated mechatronics system, Prognostics and Health Management (PHM) is one of the key works to ensure its safety and reliability, especially the performance degradation prediction presented in this paper. To deal with the small size of EHA data, a time-based data enhancement method for expanding the performance data set is proposed based on Time Generative Adversarial Network (TimeGAN). Considering the complex of working state and system performance, the relationship between the EHA operation data and its health indicator is then analyzed using the CNN-BiLSTM-Attention model, so as to generate the health indicator combine with TimeGAN synthesis data. Finally, CNN-BiLSTM-Attention model with multi-input channels is developed, and EHA data as well as TimeGAN synthesized EHA data are incorporated into the model. The results show that this method can greatly improve the prediction accuracy of EHA performance, and provide a novel method for performance degradation prediction of integrated mechatronic system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助ss采纳,获得10
2秒前
小琦琦发布了新的文献求助10
2秒前
tuanheqi应助可爱香槟采纳,获得20
5秒前
aa完成签到,获得积分10
5秒前
6秒前
请叫我风吹麦浪应助aaaaa采纳,获得10
6秒前
6秒前
6秒前
飞雪完成签到,获得积分10
7秒前
8秒前
9秒前
左丘秋尽应助文件撤销了驳回
9秒前
12秒前
yuyan完成签到,获得积分10
12秒前
13秒前
liii应助aaaaa采纳,获得10
14秒前
852应助小琦琦采纳,获得10
17秒前
烟花应助斯文冷梅采纳,获得10
17秒前
18秒前
Shennnn完成签到 ,获得积分20
19秒前
20秒前
刘忙完成签到,获得积分10
24秒前
24秒前
英姑应助Kevin Huang采纳,获得10
24秒前
24秒前
yy完成签到,获得积分10
24秒前
25秒前
25秒前
脑洞疼应助岁岁有采纳,获得10
25秒前
77完成签到,获得积分10
25秒前
大个应助干净的夜蓉采纳,获得10
26秒前
请叫我风吹麦浪应助he采纳,获得10
26秒前
惕守完成签到,获得积分10
26秒前
grip发布了新的文献求助10
27秒前
斯文冷梅发布了新的文献求助10
27秒前
fuje发布了新的文献求助10
28秒前
水獭完成签到 ,获得积分10
29秒前
29秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420