A CNN-BiLSTM-Attention approach for EHA degradation prediction based on time-series generative adversarial network

人工智能 计算机科学 生成语法 生成对抗网络 降级(电信) 系列(地层学) 时间序列 机器学习 对抗制 模式识别(心理学) 深度学习 电信 古生物学 生物
作者
Zhonghai Ma,Yiwen Sun,Hui Ji,Suolan Li,Songlin Nie,Fanglong Yin
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:215: 111443-111443 被引量:8
标识
DOI:10.1016/j.ymssp.2024.111443
摘要

As a representative integrated system for power-by-wire (PBW) systems, Electro-hydrostatic actuator (EHA) has series of advantages such as high power density, compactness, and high efficiency, which is one of the important development directions of future hydraulic system field. However, due to its high integration and high reliability requirements, it is challenging to conduct degradation studies in short period of time with limited data samples. For this type of high integrated mechatronics system, Prognostics and Health Management (PHM) is one of the key works to ensure its safety and reliability, especially the performance degradation prediction presented in this paper. To deal with the small size of EHA data, a time-based data enhancement method for expanding the performance data set is proposed based on Time Generative Adversarial Network (TimeGAN). Considering the complex of working state and system performance, the relationship between the EHA operation data and its health indicator is then analyzed using the CNN-BiLSTM-Attention model, so as to generate the health indicator combine with TimeGAN synthesis data. Finally, CNN-BiLSTM-Attention model with multi-input channels is developed, and EHA data as well as TimeGAN synthesized EHA data are incorporated into the model. The results show that this method can greatly improve the prediction accuracy of EHA performance, and provide a novel method for performance degradation prediction of integrated mechatronic system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
AllenWalker完成签到 ,获得积分10
1秒前
jw发布了新的文献求助10
1秒前
LUZIYI发布了新的文献求助10
1秒前
田様应助yt采纳,获得10
1秒前
寒桥完成签到 ,获得积分10
2秒前
854fycchjh完成签到,获得积分10
3秒前
3秒前
全一斩完成签到,获得积分10
4秒前
万能图书馆应助淡定的疾采纳,获得10
4秒前
默默完成签到,获得积分20
5秒前
美满的皮卡丘完成签到 ,获得积分10
5秒前
skysleeper完成签到,获得积分10
5秒前
酷波er应助Yolen LI采纳,获得10
5秒前
上官若男应助wang5945采纳,获得10
5秒前
852应助ri_290采纳,获得10
6秒前
搜集达人应助jw采纳,获得10
7秒前
山丘完成签到,获得积分10
9秒前
阿凡达发布了新的文献求助10
9秒前
9秒前
辉@应助yyyy采纳,获得20
9秒前
冷艳的凡阳完成签到,获得积分10
9秒前
10秒前
10秒前
sdfwsdfsd完成签到,获得积分10
11秒前
爱笑完成签到,获得积分10
12秒前
甜美的海瑶完成签到 ,获得积分10
12秒前
小灰灰完成签到,获得积分10
12秒前
Linda琳完成签到,获得积分10
13秒前
wo完成签到 ,获得积分10
13秒前
认真科研完成签到,获得积分10
13秒前
温柔的沉鱼完成签到,获得积分10
14秒前
14秒前
阿萨德完成签到,获得积分10
14秒前
Lucas应助乐乐采纳,获得10
14秒前
zhaohu47完成签到,获得积分10
14秒前
14秒前
张宁波完成签到,获得积分10
14秒前
gzh123发布了新的文献求助10
15秒前
贺兰发布了新的文献求助10
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167325
求助须知:如何正确求助?哪些是违规求助? 2818822
关于积分的说明 7922729
捐赠科研通 2478613
什么是DOI,文献DOI怎么找? 1320412
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443