SalmonScan: A novel image dataset for machine learning and deep learning analysis in fish disease detection in aquaculture

水产养殖 计算机科学 人工智能 盈利能力指数 机器学习 粮食安全 农业工程 渔业 环境科学 农业 生态学 生物 业务 工程类 财务
作者
Md Shoaib Ahmed,Samiha Maisha Jeba
出处
期刊:Data in Brief [Elsevier]
卷期号:54: 110388-110388
标识
DOI:10.1016/j.dib.2024.110388
摘要

Fish diseases pose a significant threat to food security in aquaculture, as they can lead to considerable reductions in fish production, quality, and profitability. Globally, salmon aquaculture is the quickest-expanding food production system. Detecting and diagnosing fish diseases in their early stages is essential to prevent the spread of diseases and reduce the negative impact on aquaculture's economy and environment. To serve this purpose, we introduce the SalmonScan dataset, a novel and comprehensive collection of images of healthy and infected salmon fish, which can be used for various applications in computer science and aquaculture. Images from online sources and aquaculture salmon firms were gathered to create the dataset. The dataset was then labeled based on the health status of the fish, fresh or infected. Data augmentation methods like rotation, cropping, flipping, and scaling were used to guarantee the dataset's strength and size. The dataset includes 456 images of fresh fish and 752 images of infected fish, both varied and inclusive while maintaining excellent quality. Other researchers and practitioners can use the dataset we have collected for various purposes. They can use it to create and test new or existing machine learning (ML) and deep learning (DL) based computer vision models for identifying, categorizing, counting, and analyzing the behavior and biomass of salmon fish. They can also use it to study how different environmental factors affect the health and growth of salmon fish. Furthermore, they can evaluate the accuracy and performance of different image acquisition and processing methods. Additionally, they can explore the feasibility of using generative adversarial networks (GANs) and transfer learning to improve the training speed and stability of DL models designed for fish detection. This SalmonScan dataset paper describes and documents the dataset in detail, making it publicly available and reusable for the research community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Roy完成签到,获得积分10
刚刚
永远少年完成签到,获得积分10
2秒前
niu1发布了新的文献求助10
2秒前
3秒前
Danny完成签到,获得积分10
3秒前
Lsx完成签到 ,获得积分10
3秒前
又胖了发布了新的文献求助10
4秒前
4秒前
小小飞发布了新的文献求助20
5秒前
5秒前
5秒前
6秒前
wanci应助NorthWang采纳,获得10
6秒前
zhen完成签到,获得积分10
8秒前
ns发布了新的文献求助30
9秒前
10秒前
逐风完成签到,获得积分10
10秒前
无奈的酒窝完成签到,获得积分10
11秒前
11秒前
12秒前
blingbling发布了新的文献求助10
12秒前
今后应助SherlockLiu采纳,获得30
14秒前
daniel发布了新的文献求助10
14秒前
Jason应助温言采纳,获得20
15秒前
逐风发布了新的文献求助30
16秒前
hhzz发布了新的文献求助10
16秒前
日月轮回完成签到,获得积分10
17秒前
18秒前
Yimim发布了新的文献求助10
18秒前
小小li完成签到 ,获得积分10
18秒前
小蘑菇应助细腻晓露采纳,获得10
18秒前
又胖了完成签到,获得积分10
19秒前
Eva完成签到,获得积分10
20秒前
20秒前
喵喵喵完成签到,获得积分20
20秒前
独摇之完成签到,获得积分10
20秒前
怡然雁凡完成签到,获得积分10
20秒前
顾jiu完成签到,获得积分10
21秒前
科研通AI5应助热依汗古丽采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808