SalmonScan: A novel image dataset for machine learning and deep learning analysis in fish disease detection in aquaculture

水产养殖 计算机科学 人工智能 盈利能力指数 机器学习 粮食安全 农业工程 渔业 环境科学 农业 生态学 生物 业务 工程类 财务
作者
Md Shoaib Ahmed,Samiha Maisha Jeba
出处
期刊:Data in Brief [Elsevier]
卷期号:54: 110388-110388
标识
DOI:10.1016/j.dib.2024.110388
摘要

Fish diseases pose a significant threat to food security in aquaculture, as they can lead to considerable reductions in fish production, quality, and profitability. Globally, salmon aquaculture is the quickest-expanding food production system. Detecting and diagnosing fish diseases in their early stages is essential to prevent the spread of diseases and reduce the negative impact on aquaculture's economy and environment. To serve this purpose, we introduce the SalmonScan dataset, a novel and comprehensive collection of images of healthy and infected salmon fish, which can be used for various applications in computer science and aquaculture. Images from online sources and aquaculture salmon firms were gathered to create the dataset. The dataset was then labeled based on the health status of the fish, fresh or infected. Data augmentation methods like rotation, cropping, flipping, and scaling were used to guarantee the dataset's strength and size. The dataset includes 456 images of fresh fish and 752 images of infected fish, both varied and inclusive while maintaining excellent quality. Other researchers and practitioners can use the dataset we have collected for various purposes. They can use it to create and test new or existing machine learning (ML) and deep learning (DL) based computer vision models for identifying, categorizing, counting, and analyzing the behavior and biomass of salmon fish. They can also use it to study how different environmental factors affect the health and growth of salmon fish. Furthermore, they can evaluate the accuracy and performance of different image acquisition and processing methods. Additionally, they can explore the feasibility of using generative adversarial networks (GANs) and transfer learning to improve the training speed and stability of DL models designed for fish detection. This SalmonScan dataset paper describes and documents the dataset in detail, making it publicly available and reusable for the research community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xxx完成签到,获得积分10
1秒前
2秒前
麻麻发布了新的文献求助10
4秒前
和谐板栗完成签到 ,获得积分10
5秒前
mbf发布了新的文献求助10
6秒前
cdz发布了新的文献求助10
6秒前
8秒前
8秒前
天天快乐应助苹果酸奶采纳,获得10
8秒前
Ok驳回了iNk应助
10秒前
11秒前
王安琪发布了新的文献求助10
12秒前
不易发布了新的文献求助10
13秒前
明理的向松完成签到,获得积分10
13秒前
NexusExplorer应助麻麻采纳,获得10
14秒前
富贵发布了新的文献求助10
15秒前
16秒前
文静乐松发布了新的文献求助10
16秒前
Xu完成签到 ,获得积分10
17秒前
斯文尔白完成签到 ,获得积分10
17秒前
17秒前
Linden_bd完成签到 ,获得积分10
18秒前
瘦瘦完成签到,获得积分10
19秒前
苹果酸奶发布了新的文献求助10
20秒前
医科大学菜鸡完成签到,获得积分20
21秒前
西红柿炒番茄应助Yang采纳,获得10
21秒前
21秒前
开心小宇宙佳佳完成签到,获得积分20
22秒前
22秒前
今后应助无聊的朋友采纳,获得10
22秒前
富贵完成签到,获得积分10
23秒前
雷雷完成签到,获得积分10
24秒前
24秒前
24秒前
彳亍1117应助hihearme采纳,获得10
24秒前
Sugarm完成签到,获得积分10
24秒前
小陈完成签到,获得积分10
25秒前
25秒前
25秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153361
求助须知:如何正确求助?哪些是违规求助? 2804608
关于积分的说明 7860306
捐赠科研通 2462547
什么是DOI,文献DOI怎么找? 1310806
科研通“疑难数据库(出版商)”最低求助积分说明 629396
版权声明 601794