SalmonScan: A novel image dataset for machine learning and deep learning analysis in fish disease detection in aquaculture

水产养殖 计算机科学 人工智能 盈利能力指数 机器学习 粮食安全 农业工程 渔业 环境科学 农业 生态学 生物 业务 工程类 财务
作者
Md Shoaib Ahmed,Samiha Maisha Jeba
出处
期刊:Data in Brief [Elsevier BV]
卷期号:54: 110388-110388
标识
DOI:10.1016/j.dib.2024.110388
摘要

Fish diseases pose a significant threat to food security in aquaculture, as they can lead to considerable reductions in fish production, quality, and profitability. Globally, salmon aquaculture is the quickest-expanding food production system. Detecting and diagnosing fish diseases in their early stages is essential to prevent the spread of diseases and reduce the negative impact on aquaculture's economy and environment. To serve this purpose, we introduce the SalmonScan dataset, a novel and comprehensive collection of images of healthy and infected salmon fish, which can be used for various applications in computer science and aquaculture. Images from online sources and aquaculture salmon firms were gathered to create the dataset. The dataset was then labeled based on the health status of the fish, fresh or infected. Data augmentation methods like rotation, cropping, flipping, and scaling were used to guarantee the dataset's strength and size. The dataset includes 456 images of fresh fish and 752 images of infected fish, both varied and inclusive while maintaining excellent quality. Other researchers and practitioners can use the dataset we have collected for various purposes. They can use it to create and test new or existing machine learning (ML) and deep learning (DL) based computer vision models for identifying, categorizing, counting, and analyzing the behavior and biomass of salmon fish. They can also use it to study how different environmental factors affect the health and growth of salmon fish. Furthermore, they can evaluate the accuracy and performance of different image acquisition and processing methods. Additionally, they can explore the feasibility of using generative adversarial networks (GANs) and transfer learning to improve the training speed and stability of DL models designed for fish detection. This SalmonScan dataset paper describes and documents the dataset in detail, making it publicly available and reusable for the research community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃紫完成签到,获得积分10
刚刚
安详砖家完成签到,获得积分10
1秒前
1秒前
1秒前
d_fishier完成签到 ,获得积分10
1秒前
虚拟莫茗完成签到 ,获得积分10
2秒前
2秒前
Sui完成签到,获得积分10
2秒前
小鱼完成签到,获得积分10
2秒前
JIU夭发布了新的文献求助10
2秒前
非要起名完成签到,获得积分10
3秒前
李佳慧完成签到,获得积分10
3秒前
粉色完成签到,获得积分10
3秒前
儒雅的悟空完成签到,获得积分10
3秒前
多情翠丝发布了新的文献求助10
3秒前
hhh发布了新的文献求助10
3秒前
lei.qin完成签到 ,获得积分10
3秒前
今后应助大可采纳,获得10
4秒前
徐rl完成签到 ,获得积分10
4秒前
awwwer完成签到,获得积分10
4秒前
5秒前
hq完成签到 ,获得积分10
5秒前
简单平蓝发布了新的文献求助10
5秒前
lily完成签到 ,获得积分10
5秒前
没有花活儿完成签到,获得积分10
5秒前
冯昌康关注了科研通微信公众号
5秒前
机灵一兰完成签到 ,获得积分10
6秒前
smkmfy完成签到,获得积分10
6秒前
袁菲菲发布了新的文献求助10
6秒前
雪梨完成签到,获得积分10
6秒前
大地上的鱼完成签到,获得积分10
7秒前
士载完成签到,获得积分10
8秒前
聪明眼睛完成签到,获得积分10
8秒前
KYDD完成签到,获得积分10
8秒前
小肥鱼完成签到,获得积分20
8秒前
周常通完成签到,获得积分10
8秒前
杨烨华发布了新的文献求助10
9秒前
9秒前
YANNAN完成签到,获得积分10
9秒前
思源应助ELEGENCE采纳,获得10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478