Reactive collision-free motion generation in joint space via dynamical systems and sampling-based MPC

最大值和最小值 控制理论(社会学) 机器人 计算机科学 碰撞 采样(信号处理) 模型预测控制 弹道 运动规划 数学 人工智能 计算机视觉 物理 数学分析 控制(管理) 计算机安全 滤波器(信号处理) 天文
作者
Mikhail Koptev,Nadia Figueroa,Aude Billard
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:43 (13): 2049-2069
标识
DOI:10.1177/02783649241246557
摘要

Dynamical system (DS) based motion planning offers collision-free motion, with closed-loop reactivity thanks to their analytical expression. It ensures that obstacles are not penetrated by reshaping a nominal DS through matrix modulation, which is constructed using continuously differentiable obstacle representations. However, state-of-the-art approaches may suffer from local minima induced by non-convex obstacles, thus failing to scale to complex, high-dimensional joint spaces. On the other hand, sampling-based Model Predictive Control (MPC) techniques provide feasible collision-free paths in joint-space, yet are limited to quasi-reactive scenarios due to computational complexity that grows cubically with space dimensionality and horizon length. To control the robot in the cluttered environment with moving obstacles, and to generate feasible and highly reactive collision-free motion in robots’ joint space, we present an approach for modulating joint-space DS using sampling-based MPC. Specifically, a nominal DS representing an unconstrained desired joint space motion to a target is locally deflected with obstacle-tangential velocity components navigating the robot around obstacles and avoiding local minima. Such tangential velocity components are constructed from receding horizon collision-free paths generated asynchronously by the sampling-based MPC. Notably, the MPC is not required to run constantly, but only activated when the local minima is detected. The approach is validated in simulation and real-world experiments on a 7-DoF robot demonstrating the capability of avoiding concave obstacles, while maintaining local attractor stability in both quasi-static and highly dynamic cluttered environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xi发布了新的文献求助10
刚刚
搜集达人应助文静半鬼采纳,获得10
1秒前
舒适的石头完成签到,获得积分10
1秒前
xiaozhiok发布了新的文献求助10
2秒前
Ava应助机灵飞珍采纳,获得10
2秒前
heavyD完成签到,获得积分10
2秒前
3秒前
情怀应助布丁仔采纳,获得10
3秒前
3秒前
奶油橘子完成签到,获得积分10
3秒前
JamesPei应助黑煤球采纳,获得10
4秒前
丽丽完成签到,获得积分10
4秒前
4秒前
曲奇饼干应助席半采纳,获得10
5秒前
5秒前
6秒前
光亮宛白完成签到,获得积分10
6秒前
江边鸟关注了科研通微信公众号
8秒前
Chris完成签到,获得积分10
8秒前
8秒前
时光发布了新的文献求助10
9秒前
青青草原没有派对完成签到,获得积分10
10秒前
狂野元枫发布了新的文献求助10
10秒前
shirsawa完成签到,获得积分20
10秒前
Amor完成签到,获得积分10
10秒前
大胆的渊思完成签到 ,获得积分10
10秒前
小二郎应助安沐采纳,获得10
10秒前
11秒前
Ruby发布了新的文献求助10
11秒前
quhayley应助Lilili采纳,获得10
11秒前
洪艳应助xiuxi2021采纳,获得10
11秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
浅尝离白应助科研通管家采纳,获得30
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得30
13秒前
IBMffff应助科研通管家采纳,获得10
13秒前
13秒前
c程序语言完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148940
求助须知:如何正确求助?哪些是违规求助? 2800005
关于积分的说明 7837927
捐赠科研通 2457512
什么是DOI,文献DOI怎么找? 1307891
科研通“疑难数据库(出版商)”最低求助积分说明 628322
版权声明 601685