亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Reactive collision-free motion generation in joint space via dynamical systems and sampling-based MPC

最大值和最小值 控制理论(社会学) 机器人 计算机科学 碰撞 采样(信号处理) 模型预测控制 弹道 运动规划 数学 人工智能 计算机视觉 物理 数学分析 控制(管理) 滤波器(信号处理) 计算机安全 天文
作者
Mikhail Koptev,Nadia Figueroa,Aude Billard
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:43 (13): 2049-2069
标识
DOI:10.1177/02783649241246557
摘要

Dynamical system (DS) based motion planning offers collision-free motion, with closed-loop reactivity thanks to their analytical expression. It ensures that obstacles are not penetrated by reshaping a nominal DS through matrix modulation, which is constructed using continuously differentiable obstacle representations. However, state-of-the-art approaches may suffer from local minima induced by non-convex obstacles, thus failing to scale to complex, high-dimensional joint spaces. On the other hand, sampling-based Model Predictive Control (MPC) techniques provide feasible collision-free paths in joint-space, yet are limited to quasi-reactive scenarios due to computational complexity that grows cubically with space dimensionality and horizon length. To control the robot in the cluttered environment with moving obstacles, and to generate feasible and highly reactive collision-free motion in robots’ joint space, we present an approach for modulating joint-space DS using sampling-based MPC. Specifically, a nominal DS representing an unconstrained desired joint space motion to a target is locally deflected with obstacle-tangential velocity components navigating the robot around obstacles and avoiding local minima. Such tangential velocity components are constructed from receding horizon collision-free paths generated asynchronously by the sampling-based MPC. Notably, the MPC is not required to run constantly, but only activated when the local minima is detected. The approach is validated in simulation and real-world experiments on a 7-DoF robot demonstrating the capability of avoiding concave obstacles, while maintaining local attractor stability in both quasi-static and highly dynamic cluttered environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
失眠采白发布了新的文献求助10
15秒前
雪中完成签到 ,获得积分10
22秒前
31秒前
shhoing应助科研通管家采纳,获得10
34秒前
汉堡包应助悲凉的冬天采纳,获得10
39秒前
无情问枫完成签到 ,获得积分10
45秒前
51秒前
56秒前
风长眼量完成签到,获得积分10
1分钟前
努力的淼淼完成签到 ,获得积分10
1分钟前
1分钟前
调皮千兰发布了新的文献求助10
1分钟前
1分钟前
明理的惜蕊完成签到,获得积分20
1分钟前
2分钟前
嘟嘟嘟嘟发布了新的文献求助10
2分钟前
2分钟前
moodlunatic发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
mmyhn应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
英俊的铭应助moodlunatic采纳,获得10
2分钟前
mark163完成签到,获得积分10
2分钟前
moodlunatic完成签到,获得积分20
3分钟前
NexusExplorer应助WQY采纳,获得10
3分钟前
3分钟前
WQY发布了新的文献求助10
3分钟前
和风完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
sunfield2014发布了新的文献求助10
3分钟前
WQY完成签到,获得积分10
3分钟前
所所应助Msure采纳,获得10
3分钟前
4分钟前
科研通AI6应助失眠采白采纳,获得10
4分钟前
4分钟前
wanci应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561366
求助须知:如何正确求助?哪些是违规求助? 4646540
关于积分的说明 14678579
捐赠科研通 4587789
什么是DOI,文献DOI怎么找? 2517212
邀请新用户注册赠送积分活动 1490496
关于科研通互助平台的介绍 1461404