Reactive collision-free motion generation in joint space via dynamical systems and sampling-based MPC

最大值和最小值 控制理论(社会学) 机器人 计算机科学 碰撞 采样(信号处理) 模型预测控制 弹道 运动规划 数学 人工智能 计算机视觉 物理 数学分析 控制(管理) 计算机安全 滤波器(信号处理) 天文
作者
Mikhail Koptev,Nadia Figueroa,Aude Billard
出处
期刊:The International Journal of Robotics Research [SAGE]
卷期号:43 (13): 2049-2069
标识
DOI:10.1177/02783649241246557
摘要

Dynamical system (DS) based motion planning offers collision-free motion, with closed-loop reactivity thanks to their analytical expression. It ensures that obstacles are not penetrated by reshaping a nominal DS through matrix modulation, which is constructed using continuously differentiable obstacle representations. However, state-of-the-art approaches may suffer from local minima induced by non-convex obstacles, thus failing to scale to complex, high-dimensional joint spaces. On the other hand, sampling-based Model Predictive Control (MPC) techniques provide feasible collision-free paths in joint-space, yet are limited to quasi-reactive scenarios due to computational complexity that grows cubically with space dimensionality and horizon length. To control the robot in the cluttered environment with moving obstacles, and to generate feasible and highly reactive collision-free motion in robots’ joint space, we present an approach for modulating joint-space DS using sampling-based MPC. Specifically, a nominal DS representing an unconstrained desired joint space motion to a target is locally deflected with obstacle-tangential velocity components navigating the robot around obstacles and avoiding local minima. Such tangential velocity components are constructed from receding horizon collision-free paths generated asynchronously by the sampling-based MPC. Notably, the MPC is not required to run constantly, but only activated when the local minima is detected. The approach is validated in simulation and real-world experiments on a 7-DoF robot demonstrating the capability of avoiding concave obstacles, while maintaining local attractor stability in both quasi-static and highly dynamic cluttered environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juanjuan完成签到,获得积分20
刚刚
立波发布了新的文献求助10
刚刚
灵溪完成签到 ,获得积分10
1秒前
故意的沛蓝完成签到,获得积分10
1秒前
1秒前
小巧日记本完成签到,获得积分10
1秒前
7275XXX完成签到,获得积分10
2秒前
我是老大应助xwc采纳,获得30
3秒前
123完成签到,获得积分10
4秒前
ChangSZ应助研友_8oYg4n采纳,获得10
4秒前
思源应助暴躁的安柏采纳,获得10
5秒前
5秒前
李繁蕊发布了新的文献求助10
5秒前
Evelyn关注了科研通微信公众号
6秒前
6秒前
WKY完成签到,获得积分10
7秒前
manan发布了新的文献求助10
7秒前
亮亮关注了科研通微信公众号
7秒前
yuming完成签到,获得积分10
7秒前
8秒前
Curllen完成签到,获得积分10
8秒前
lzj001983发布了新的文献求助10
8秒前
8秒前
shouyu29应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
立波完成签到,获得积分10
9秒前
9秒前
科目三应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
Ava应助科研通管家采纳,获得10
10秒前
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
shouyu29应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740