已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Reactive collision-free motion generation in joint space via dynamical systems and sampling-based MPC

最大值和最小值 控制理论(社会学) 机器人 计算机科学 碰撞 采样(信号处理) 模型预测控制 弹道 运动规划 数学 人工智能 计算机视觉 物理 数学分析 控制(管理) 计算机安全 滤波器(信号处理) 天文
作者
Mikhail Koptev,Nadia Figueroa,Aude Billard
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:43 (13): 2049-2069
标识
DOI:10.1177/02783649241246557
摘要

Dynamical system (DS) based motion planning offers collision-free motion, with closed-loop reactivity thanks to their analytical expression. It ensures that obstacles are not penetrated by reshaping a nominal DS through matrix modulation, which is constructed using continuously differentiable obstacle representations. However, state-of-the-art approaches may suffer from local minima induced by non-convex obstacles, thus failing to scale to complex, high-dimensional joint spaces. On the other hand, sampling-based Model Predictive Control (MPC) techniques provide feasible collision-free paths in joint-space, yet are limited to quasi-reactive scenarios due to computational complexity that grows cubically with space dimensionality and horizon length. To control the robot in the cluttered environment with moving obstacles, and to generate feasible and highly reactive collision-free motion in robots’ joint space, we present an approach for modulating joint-space DS using sampling-based MPC. Specifically, a nominal DS representing an unconstrained desired joint space motion to a target is locally deflected with obstacle-tangential velocity components navigating the robot around obstacles and avoiding local minima. Such tangential velocity components are constructed from receding horizon collision-free paths generated asynchronously by the sampling-based MPC. Notably, the MPC is not required to run constantly, but only activated when the local minima is detected. The approach is validated in simulation and real-world experiments on a 7-DoF robot demonstrating the capability of avoiding concave obstacles, while maintaining local attractor stability in both quasi-static and highly dynamic cluttered environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz完成签到,获得积分10
1秒前
2秒前
MEIMEI发布了新的文献求助10
5秒前
在水一方应助抹宁采纳,获得10
6秒前
8秒前
8秒前
传奇3应助dengdengdeng采纳,获得10
10秒前
浩淼发布了新的文献求助10
11秒前
boboking完成签到,获得积分10
14秒前
17秒前
17秒前
faye完成签到,获得积分10
18秒前
18秒前
自由从筠完成签到 ,获得积分10
19秒前
Liangyong_Fu完成签到 ,获得积分10
19秒前
庾新竹发布了新的文献求助10
20秒前
领导范儿应助隐形不言采纳,获得10
21秒前
gaoyayaaa完成签到,获得积分10
23秒前
苏乘风发布了新的文献求助10
23秒前
抹宁发布了新的文献求助10
23秒前
31秒前
32秒前
然然完成签到,获得积分10
37秒前
37秒前
Lucas应助菜根谭采纳,获得10
39秒前
整齐凝竹完成签到 ,获得积分10
40秒前
41秒前
衣裳薄完成签到,获得积分10
43秒前
43秒前
gaoyayaaa发布了新的文献求助10
43秒前
43秒前
43秒前
沉静的冥幽完成签到,获得积分10
44秒前
45秒前
SDUMoist发布了新的文献求助10
47秒前
缓慢飞松完成签到 ,获得积分10
47秒前
无辜的秀发布了新的文献求助10
48秒前
花痴的手套完成签到 ,获得积分10
49秒前
50秒前
51秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959900
求助须知:如何正确求助?哪些是违规求助? 3506106
关于积分的说明 11127978
捐赠科研通 3238061
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021