Reactive collision-free motion generation in joint space via dynamical systems and sampling-based MPC

最大值和最小值 控制理论(社会学) 机器人 计算机科学 碰撞 采样(信号处理) 模型预测控制 弹道 运动规划 数学 人工智能 计算机视觉 物理 数学分析 控制(管理) 计算机安全 滤波器(信号处理) 天文
作者
Mikhail Koptev,Nadia Figueroa,Aude Billard
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:43 (13): 2049-2069
标识
DOI:10.1177/02783649241246557
摘要

Dynamical system (DS) based motion planning offers collision-free motion, with closed-loop reactivity thanks to their analytical expression. It ensures that obstacles are not penetrated by reshaping a nominal DS through matrix modulation, which is constructed using continuously differentiable obstacle representations. However, state-of-the-art approaches may suffer from local minima induced by non-convex obstacles, thus failing to scale to complex, high-dimensional joint spaces. On the other hand, sampling-based Model Predictive Control (MPC) techniques provide feasible collision-free paths in joint-space, yet are limited to quasi-reactive scenarios due to computational complexity that grows cubically with space dimensionality and horizon length. To control the robot in the cluttered environment with moving obstacles, and to generate feasible and highly reactive collision-free motion in robots’ joint space, we present an approach for modulating joint-space DS using sampling-based MPC. Specifically, a nominal DS representing an unconstrained desired joint space motion to a target is locally deflected with obstacle-tangential velocity components navigating the robot around obstacles and avoiding local minima. Such tangential velocity components are constructed from receding horizon collision-free paths generated asynchronously by the sampling-based MPC. Notably, the MPC is not required to run constantly, but only activated when the local minima is detected. The approach is validated in simulation and real-world experiments on a 7-DoF robot demonstrating the capability of avoiding concave obstacles, while maintaining local attractor stability in both quasi-static and highly dynamic cluttered environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助WANGJD采纳,获得10
1秒前
1秒前
科研通AI6应助jyyg采纳,获得30
1秒前
pcr163应助Angie采纳,获得50
2秒前
2秒前
小猴发布了新的文献求助10
2秒前
DRHSK发布了新的文献求助20
3秒前
Spinnin完成签到,获得积分10
4秒前
国足预备员完成签到 ,获得积分10
4秒前
ding应助piers采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
张德洁完成签到,获得积分10
5秒前
昭玥完成签到,获得积分10
6秒前
6秒前
6秒前
顾矜应助咸鱼采纳,获得10
6秒前
领导范儿应助小王采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得30
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
Ava应助xhDoc采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
常常完成签到,获得积分0
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
脂蛋白抗原应助杨老师采纳,获得10
6秒前
Orange应助后夜采纳,获得10
6秒前
6秒前
666JACS完成签到,获得积分20
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
chenhuiwan应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
科研豆包完成签到 ,获得积分10
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
PP应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475