亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FedSafe-No KDC Needed: Decentralized Federated Learning with Enhanced Security and Efficiency

计算机科学
作者
Mohamed I. Ibrahem,Mostafa M. Fouda,Zubair Md. Fadlullah
标识
DOI:10.1109/ccnc51664.2024.10454870
摘要

Cloud-based federated learning (FL) services have received increasing attention due to their ability to enable collaborative global model training without the need to collect local data from participants. To generate a global model, local models are trained on participants' local data and only model parameters are sent to an aggregator server. Nonetheless, revealing model parameters can still reveal training data via launching attacks, e.g., inference and membership. Hence, to protect model parameters, a secure global model aggregation scheme is needed to protect these parameters from unauthorized access. Existing solutions to this issue, which are based on homomorphic encryption and secure multi-party computation, tend to have large overheads and slow down training times. Functional encryption (FE) has been proposed as a solution for resolving privacy-preservation issues in FL, but current solutions suffer from high overhead and lack of security such as leaking master private key. To address these issues, this paper proposes a privacy-protecting, efficient, and decentralized FL framework, called FedSafe, based on FE without the need for a trusted key distribution center (KDC). The proposed scheme allows the participants to communicate with an aggregator to construct a global model without disclosing or learning their local models' parameters or the training data, thereby safeguarding their privacy. Through rigorous testing with real-world data, it is demonstrated that FedSafe outperforms the state-of-the-art privacy-protecting FL schemes in terms of security, scalability, and communication and computation overhead. Unlike existing approaches, this is accomplished without depending on any trusted KDC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
14秒前
李健应助ARESCI采纳,获得10
36秒前
samsahpiyaz发布了新的文献求助10
50秒前
犹豫翠萱完成签到 ,获得积分10
2分钟前
老迟到的羊完成签到 ,获得积分10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
2分钟前
moonlight发布了新的文献求助10
2分钟前
gjq完成签到,获得积分10
3分钟前
hhuajw完成签到,获得积分10
3分钟前
烂漫的芫完成签到 ,获得积分10
3分钟前
4分钟前
爱思考的小笨笨完成签到,获得积分10
4分钟前
4分钟前
obedVL完成签到,获得积分10
4分钟前
昵称已挥发完成签到,获得积分10
4分钟前
sldragon完成签到,获得积分10
4分钟前
4分钟前
xiaoyuan发布了新的文献求助10
4分钟前
小黄还你好完成签到 ,获得积分10
5分钟前
LYL完成签到,获得积分10
5分钟前
Wei发布了新的文献求助10
5分钟前
5分钟前
群山完成签到 ,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
脑洞疼应助米兰的小铁匠采纳,获得10
6分钟前
7分钟前
7分钟前
7分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
gszy1975完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
SciGPT应助务实的犀牛采纳,获得10
9分钟前
冉亦完成签到,获得积分10
9分钟前
10分钟前
yhw发布了新的文献求助10
10分钟前
Jay完成签到,获得积分10
10分钟前
空里叽哇完成签到,获得积分10
11分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584704
求助须知:如何正确求助?哪些是违规求助? 4668646
关于积分的说明 14771521
捐赠科研通 4613528
什么是DOI,文献DOI怎么找? 2530193
邀请新用户注册赠送积分活动 1499072
关于科研通互助平台的介绍 1467516