FedSafe-No KDC Needed: Decentralized Federated Learning with Enhanced Security and Efficiency

计算机科学
作者
Mohamed I. Ibrahem,Mostafa M. Fouda,Zubair Md. Fadlullah
标识
DOI:10.1109/ccnc51664.2024.10454870
摘要

Cloud-based federated learning (FL) services have received increasing attention due to their ability to enable collaborative global model training without the need to collect local data from participants. To generate a global model, local models are trained on participants' local data and only model parameters are sent to an aggregator server. Nonetheless, revealing model parameters can still reveal training data via launching attacks, e.g., inference and membership. Hence, to protect model parameters, a secure global model aggregation scheme is needed to protect these parameters from unauthorized access. Existing solutions to this issue, which are based on homomorphic encryption and secure multi-party computation, tend to have large overheads and slow down training times. Functional encryption (FE) has been proposed as a solution for resolving privacy-preservation issues in FL, but current solutions suffer from high overhead and lack of security such as leaking master private key. To address these issues, this paper proposes a privacy-protecting, efficient, and decentralized FL framework, called FedSafe, based on FE without the need for a trusted key distribution center (KDC). The proposed scheme allows the participants to communicate with an aggregator to construct a global model without disclosing or learning their local models' parameters or the training data, thereby safeguarding their privacy. Through rigorous testing with real-world data, it is demonstrated that FedSafe outperforms the state-of-the-art privacy-protecting FL schemes in terms of security, scalability, and communication and computation overhead. Unlike existing approaches, this is accomplished without depending on any trusted KDC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千跃应助太清采纳,获得20
1秒前
悠旷完成签到 ,获得积分10
1秒前
爆米花应助past采纳,获得10
1秒前
刘壮实完成签到,获得积分10
1秒前
上官若男应助迷路芝麻采纳,获得10
1秒前
lb发布了新的文献求助10
2秒前
2秒前
大个应助na采纳,获得10
2秒前
kidmilli210发布了新的文献求助10
3秒前
3秒前
春天的粥完成签到 ,获得积分10
4秒前
4秒前
虚幻凡柔完成签到,获得积分20
5秒前
郭宏亮完成签到,获得积分10
5秒前
太清完成签到,获得积分10
5秒前
朱荧荧完成签到,获得积分10
6秒前
刘旭阳发布了新的文献求助10
6秒前
6秒前
大模型应助摆烂采纳,获得10
6秒前
6秒前
gattina发布了新的文献求助10
7秒前
Q-完成签到 ,获得积分20
7秒前
neurocf发布了新的文献求助30
8秒前
slsdianzi完成签到,获得积分10
8秒前
爱看文献的小羽毛完成签到,获得积分10
8秒前
打打应助moonlight采纳,获得10
8秒前
茉莉蜜茶完成签到,获得积分10
8秒前
8秒前
雪梅完成签到 ,获得积分10
9秒前
10秒前
10秒前
Singularity应助emilybei采纳,获得10
10秒前
活力山蝶应助糊涂的香寒采纳,获得10
10秒前
童童发布了新的文献求助10
11秒前
11秒前
小羊羊完成签到,获得积分10
11秒前
阿哲发布了新的文献求助10
11秒前
如eb完成签到,获得积分20
12秒前
chenll1988完成签到 ,获得积分10
12秒前
Ava应助椿上春树采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950754
求助须知:如何正确求助?哪些是违规求助? 3496198
关于积分的说明 11080706
捐赠科研通 3226588
什么是DOI,文献DOI怎么找? 1783939
邀请新用户注册赠送积分活动 867955
科研通“疑难数据库(出版商)”最低求助积分说明 800993