FedSafe-No KDC Needed: Decentralized Federated Learning with Enhanced Security and Efficiency

计算机科学
作者
Mohamed I. Ibrahem,Mostafa M. Fouda,Zubair Md. Fadlullah
标识
DOI:10.1109/ccnc51664.2024.10454870
摘要

Cloud-based federated learning (FL) services have received increasing attention due to their ability to enable collaborative global model training without the need to collect local data from participants. To generate a global model, local models are trained on participants' local data and only model parameters are sent to an aggregator server. Nonetheless, revealing model parameters can still reveal training data via launching attacks, e.g., inference and membership. Hence, to protect model parameters, a secure global model aggregation scheme is needed to protect these parameters from unauthorized access. Existing solutions to this issue, which are based on homomorphic encryption and secure multi-party computation, tend to have large overheads and slow down training times. Functional encryption (FE) has been proposed as a solution for resolving privacy-preservation issues in FL, but current solutions suffer from high overhead and lack of security such as leaking master private key. To address these issues, this paper proposes a privacy-protecting, efficient, and decentralized FL framework, called FedSafe, based on FE without the need for a trusted key distribution center (KDC). The proposed scheme allows the participants to communicate with an aggregator to construct a global model without disclosing or learning their local models' parameters or the training data, thereby safeguarding their privacy. Through rigorous testing with real-world data, it is demonstrated that FedSafe outperforms the state-of-the-art privacy-protecting FL schemes in terms of security, scalability, and communication and computation overhead. Unlike existing approaches, this is accomplished without depending on any trusted KDC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
喜悦的从波完成签到,获得积分10
1秒前
CipherSage应助猫毛采纳,获得10
1秒前
D3发布了新的文献求助10
2秒前
赘婿应助LCct采纳,获得10
2秒前
4秒前
春夏秋冬发布了新的文献求助10
4秒前
疯狂的狮子完成签到,获得积分10
4秒前
4秒前
......发布了新的文献求助10
4秒前
5秒前
LIN发布了新的文献求助10
5秒前
顾翩翩完成签到,获得积分10
6秒前
6秒前
lcs完成签到,获得积分10
6秒前
6秒前
Jasper应助2123121321321采纳,获得10
7秒前
沂静发布了新的文献求助10
7秒前
Kira发布了新的文献求助10
7秒前
靓丽访枫发布了新的文献求助10
8秒前
8秒前
8秒前
王菠萝完成签到,获得积分10
8秒前
hearts_j应助cloud采纳,获得30
8秒前
徐rl完成签到 ,获得积分10
8秒前
9秒前
Zeal发布了新的文献求助10
9秒前
9秒前
10秒前
852应助疯狂的狮子采纳,获得30
10秒前
10秒前
LCct完成签到,获得积分20
10秒前
香蕉觅云应助LIN采纳,获得10
11秒前
ivy0425发布了新的文献求助10
12秒前
小二郎应助不要引力采纳,获得10
12秒前
12秒前
忧郁水彤发布了新的文献求助10
13秒前
13秒前
swing发布了新的文献求助10
13秒前
zzzzd发布了新的文献求助10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149141
求助须知:如何正确求助?哪些是违规求助? 2800201
关于积分的说明 7838971
捐赠科研通 2457756
什么是DOI,文献DOI怎么找? 1308090
科研通“疑难数据库(出版商)”最低求助积分说明 628392
版权声明 601706