FedSafe-No KDC Needed: Decentralized Federated Learning with Enhanced Security and Efficiency

计算机科学
作者
Mohamed I. Ibrahem,Mostafa M. Fouda,Zubair Md. Fadlullah
标识
DOI:10.1109/ccnc51664.2024.10454870
摘要

Cloud-based federated learning (FL) services have received increasing attention due to their ability to enable collaborative global model training without the need to collect local data from participants. To generate a global model, local models are trained on participants' local data and only model parameters are sent to an aggregator server. Nonetheless, revealing model parameters can still reveal training data via launching attacks, e.g., inference and membership. Hence, to protect model parameters, a secure global model aggregation scheme is needed to protect these parameters from unauthorized access. Existing solutions to this issue, which are based on homomorphic encryption and secure multi-party computation, tend to have large overheads and slow down training times. Functional encryption (FE) has been proposed as a solution for resolving privacy-preservation issues in FL, but current solutions suffer from high overhead and lack of security such as leaking master private key. To address these issues, this paper proposes a privacy-protecting, efficient, and decentralized FL framework, called FedSafe, based on FE without the need for a trusted key distribution center (KDC). The proposed scheme allows the participants to communicate with an aggregator to construct a global model without disclosing or learning their local models' parameters or the training data, thereby safeguarding their privacy. Through rigorous testing with real-world data, it is demonstrated that FedSafe outperforms the state-of-the-art privacy-protecting FL schemes in terms of security, scalability, and communication and computation overhead. Unlike existing approaches, this is accomplished without depending on any trusted KDC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CES_SH完成签到,获得积分10
刚刚
小知了完成签到,获得积分10
1秒前
壮观的白羊完成签到 ,获得积分10
2秒前
谦让汝燕完成签到,获得积分10
2秒前
现实的日记本完成签到,获得积分10
4秒前
韭黄发布了新的文献求助10
4秒前
科研通AI5应助支雨泽采纳,获得10
5秒前
英勇的红酒完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助150
7秒前
马儿饿了要吃草完成签到,获得积分10
7秒前
乔治完成签到,获得积分10
10秒前
坦率的棒棒糖完成签到,获得积分10
13秒前
牧长一完成签到 ,获得积分0
13秒前
荔枝励志完成签到,获得积分10
14秒前
roger完成签到 ,获得积分10
14秒前
万能图书馆应助Swait采纳,获得10
15秒前
小高同学完成签到,获得积分10
16秒前
岁末完成签到 ,获得积分10
16秒前
无敌科研大王完成签到,获得积分10
19秒前
薄荷小新完成签到 ,获得积分10
19秒前
韭黄发布了新的文献求助10
21秒前
X17完成签到,获得积分10
21秒前
从容傲柏完成签到,获得积分10
21秒前
英吉利25发布了新的文献求助20
22秒前
23秒前
ppapp完成签到 ,获得积分10
23秒前
24秒前
又又完成签到 ,获得积分10
24秒前
Ashley完成签到 ,获得积分10
26秒前
孙孙孙啊完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
严念桃完成签到,获得积分0
26秒前
王可欣完成签到,获得积分10
27秒前
Much完成签到 ,获得积分10
27秒前
aaaa发布了新的文献求助10
28秒前
花卷完成签到,获得积分10
28秒前
韭黄完成签到,获得积分20
29秒前
Swait发布了新的文献求助10
29秒前
CT发布了新的文献求助10
29秒前
相南相北完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952372
求助须知:如何正确求助?哪些是违规求助? 4215173
关于积分的说明 13111456
捐赠科研通 3997149
什么是DOI,文献DOI怎么找? 2187760
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740